Výsledky vyhľadávania - (( conditional variational autoencoder(cvae) ) OR ( conditioning variational autoencoder(cvae) ))
-
1
A Variational Autoencoder Approach to Conditional Generation of Possible Future Volatility Surfaces.
Autori: a ďalší
Zdroj: Journal of Financial Data Science; Summer2025, Vol. 7 Issue 3, p86-114, 29p
-
2
-
3
Autori: a ďalší
Zdroj: International Transactions on Electrical Energy Systems; 9/23/2025, Vol. 2025, p1-12, 12p
-
4
Autori: a ďalší
Zdroj: Journal of Applied Physics; 8/14/2024, Vol. 136 Issue 6, p1-13, 13p
-
5
Autori:
Zdroj: Astronomy (2674-0346); Sep2025, Vol. 4 Issue 3, p13, 14p
-
6
Autori:
Zdroj: Electronics (2079-9292); Jun2025, Vol. 14 Issue 11, p2185, 31p
Predmety: AUTOENCODERS, SUPPLY & demand, GENERALIZATION
-
7
Autori: a ďalší
Zdroj: Process Science. 2
Predmety: Conditional models, Generative AI, Process mining, Deep learning
Popis súboru: application/pdf
-
8
Autori: a ďalší
Predmety: FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Vision and Pattern Recognition
Prístupová URL adresa: http://arxiv.org/abs/2503.11937
-
9
-
10
Autori: a ďalší
Zdroj: PLoS ONE; 10/31/2025, Vol. 20 Issue 10, p1-28, 28p
-
11
Autori: Kiran Bacsa
Zdroj: Materials Research Proceedings. 50:189-200
-
12
Autori: a ďalší
Zdroj: Frontiers in Digital Health; 2025, p1-13, 13p
Predmety: HEART anatomy, RISK assessment, PREDICTION models, RESEARCH funding, RECEIVER operating characteristic curves, CARDIOVASCULAR diseases risk factors, MAGNETIC resonance imaging, RELATIVE medical risk, ELECTROCARDIOGRAPHY, KAPLAN-Meier estimator, DEEP learning, SURVIVAL analysis (Biometry), ELECTRODES, PROPORTIONAL hazards models
Geografický termín: UNITED Kingdom
-
13
Autori:
Zdroj: Signal, Image & Video Processing; Nov2025, Vol. 19 Issue 11, p1-8, 8p
-
14
Autori: a ďalší
Zdroj: Front Digit Health
Frontiers in Digital Health, Vol 7 (2025)Predmety: cardiovascular disease, ECG electrodes, Electronic computers. Computer science, cardiac MRI, cardiovascular risk prediction, Medicine, Digital Health, variational autoencoder, QA75.5-76.95, Public aspects of medicine, RA1-1270, ECG generation
-
15
Autori: a ďalší
Zdroj: Nature Communications; 10/6/2025, Vol. 16 Issue 1, p1-16, 16p
-
16
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Conditional VAEs, Gaussian process, Missing value imputation, Variational autoencoders, Computer and information sciences
Popis súboru: application/pdf
Relation: We would like to acknowledge the computational resources provided by Aalto Science-IT, Finland. We would also like to thank Mine Ogretir for help with the PPMI dataset as well as Manuel Haussmann for the helpful discussions and comments. This work was supported by the Academy of Finland [328401] and Bayer Oy. The PPMI dataset used in the preparation of this article was obtained from the Parkin-son's Progression Markers Initiative (PPMI) database (https://www.ppmi-info.org/access-data-specimens/download-data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI - a public-private partnership - is funded by The Michael J. Fox Foundation for Parkinson's Research and funding partners, including 4D Pharma, AbbVie Inc., AcureX Therapeutics, Allergan, Amathus Therapeutics, Aligning Science Across Parkinson's (ASAP), Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol Myers Squibb, CalicoLife Sciences LLC, Celgene Corporation, DaCapo Brainscience, Denali Therapeutics, The Edmond J. Safra Foundation, Eli Lilly and Company,GE Healthcare, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Pharmaceuticals, Lundbeck, Merck & Co., Inc., MesoScale Diagnostics, LLC, Neurocrine Biosciences, Pfizer Inc., Piramal Imaging, Prevail Therapeutics, F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc., Sanofi Genzyme, Servier, Takeda Pharmaceutical Company, Teva Neuroscience, Inc., UCB, Vanqua Bio, VerilyLife Sciences, Voyager Therapeutics, Inc., Yumanity Therapeutics, Inc.; Ramchandran , S , Tikhonov , G , Lönnroth , O , Tiikkainen , P & Lahdesmaki , H 2024 , ' Learning conditional variational autoencoders with missing covariates ' , Pattern Recognition , vol. 147 , 110113 . https://doi.org/10.1016/j.patcog.2023.110113; http://hdl.handle.net/10138/569684; 85177739591; 001124231300001
Dostupnosť: http://hdl.handle.net/10138/569684
-
17
Autori:
Zdroj: International Journal of Engineering Transactions C: Aspects; Jun2026, Vol. 39 Issue 6, p1390-1401, 12p
-
18
Autori: a ďalší
Zdroj: Astrophysical Journal; 2/1/2024, Vol. 961 Issue 2, p1-14, 14p
Predmety: LIGHT curves, STELLAR mergers, NEUTRON stars, BINARY stars, EQUATIONS of state
-
19
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Pattern Recognition. 147:110113
Predmety: ta113, FOS: Computer and information sciences, Computer Science - Machine Learning, Conditional VAEs, Computer and information sciences, Missing value imputation, Machine Learning (stat.ML), 02 engineering and technology, 01 natural sciences, Machine Learning (cs.LG), Statistics - Machine Learning, 0202 electrical engineering, electronic engineering, information engineering, 0101 mathematics, Gaussian process, Variational autoencoders, 0105 earth and related environmental sciences
Popis súboru: application/pdf
-
20
Autori: a ďalší
Zdroj: Electronics (2079-9292); Jan2025, Vol. 14 Issue 2, p280, 23p
Predmety: AUTOENCODERS, MOTIVATION (Psychology)
Nájsť tento článok vo Web of Science
Full Text Finder