Výsledky vyhledávání - (( conditional variational autoencoder(cae) ) OR ( conditioning variational autoencoder(cvae) ))
-
1
Autoři:
Zdroj: Frontiers in Digital Health; 2025, p1-12, 12p
-
2
Autoři:
Zdroj: Biomedical Engineering Letters; Sep2025, Vol. 15 Issue 5, p831-843, 13p
-
3
Autoři:
Zdroj: International Journal of Engineering Transactions C: Aspects; Jun2026, Vol. 39 Issue 6, p1390-1401, 12p
-
4
Autoři: a další
Zdroj: Frontiers in Digital Health, Vol 7 (2025)
Témata: cardiac MRI, cardiovascular disease, cardiovascular risk prediction, ECG electrodes, ECG generation, variational autoencoder, Medicine, Public aspects of medicine, RA1-1270, Electronic computers. Computer science, QA75.5-76.95
Popis souboru: electronic resource
Relation: https://www.frontiersin.org/articles/10.3389/fdgth.2025.1558589/full; https://doaj.org/toc/2673-253X
Přístupová URL adresa: https://doaj.org/article/2a10921b18e7497d98cab78e66c9b407
-
5
-
6
Autoři: a další
Zdroj: Symmetry (20738994); Jul2024, Vol. 16 Issue 7, p791, 17p
-
7
Autoři: a další
Zdroj: Wood Material Science & Engineering; Oct2024, Vol. 19 Issue 5, p1004-1014, 11p
-
8
Autoři: a další
Zdroj: Journal of Applied Physics; 8/14/2024, Vol. 136 Issue 6, p1-13, 13p
-
9
Autoři:
Zdroj: Journal of Petroleum Exploration & Production Technology; Feb2025, Vol. 15 Issue 2, p1-60, 60p
-
10
Autoři: a další
Zdroj: ACM Computing Surveys; Jan2025, Vol. 57 Issue 1, p1-42, 42p
-
11
A Variational Autoencoder Approach to Conditional Generation of Possible Future Volatility Surfaces.
Autoři: a další
Zdroj: Journal of Financial Data Science; Summer2025, Vol. 7 Issue 3, p86-114, 29p
-
12
Autoři: a další
Zdroj: International Transactions on Electrical Energy Systems; 9/23/2025, Vol. 2025, p1-12, 12p
-
13
Autoři:
Zdroj: Astronomy (2674-0346); Sep2025, Vol. 4 Issue 3, p13, 14p
-
14
Autoři:
Zdroj: Applied Artificial Intelligence; Dec2025, Vol. 39 Issue 1, p1-12, 12p
-
15
Autoři: a další
Zdroj: Discover Artificial Intelligence; 12/7/2023, Vol. 3 Issue 1, p1-78, 78p
-
16
Autoři:
Zdroj: Signal, Image & Video Processing; Nov2025, Vol. 19 Issue 11, p1-8, 8p
-
17
Autoři: a další
Zdroj: Nature Communications; 10/6/2025, Vol. 16 Issue 1, p1-16, 16p
-
18
Autoři:
Zdroj: Entropy; Nov2025, Vol. 27 Issue 11, p1086, 22p
-
19
Autoři: a další
Zdroj: PLoS ONE; 10/31/2025, Vol. 20 Issue 10, p1-28, 28p
-
20
Autoři: a další
Přispěvatelé: a další
Témata: Conditional VAEs, Gaussian process, Missing value imputation, Variational autoencoders, Computer and information sciences
Popis souboru: application/pdf
Relation: We would like to acknowledge the computational resources provided by Aalto Science-IT, Finland. We would also like to thank Mine Ogretir for help with the PPMI dataset as well as Manuel Haussmann for the helpful discussions and comments. This work was supported by the Academy of Finland [328401] and Bayer Oy. The PPMI dataset used in the preparation of this article was obtained from the Parkin-son's Progression Markers Initiative (PPMI) database (https://www.ppmi-info.org/access-data-specimens/download-data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI - a public-private partnership - is funded by The Michael J. Fox Foundation for Parkinson's Research and funding partners, including 4D Pharma, AbbVie Inc., AcureX Therapeutics, Allergan, Amathus Therapeutics, Aligning Science Across Parkinson's (ASAP), Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol Myers Squibb, CalicoLife Sciences LLC, Celgene Corporation, DaCapo Brainscience, Denali Therapeutics, The Edmond J. Safra Foundation, Eli Lilly and Company,GE Healthcare, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Pharmaceuticals, Lundbeck, Merck & Co., Inc., MesoScale Diagnostics, LLC, Neurocrine Biosciences, Pfizer Inc., Piramal Imaging, Prevail Therapeutics, F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc., Sanofi Genzyme, Servier, Takeda Pharmaceutical Company, Teva Neuroscience, Inc., UCB, Vanqua Bio, VerilyLife Sciences, Voyager Therapeutics, Inc., Yumanity Therapeutics, Inc.; Ramchandran , S , Tikhonov , G , Lönnroth , O , Tiikkainen , P & Lahdesmaki , H 2024 , ' Learning conditional variational autoencoders with missing covariates ' , Pattern Recognition , vol. 147 , 110113 . https://doi.org/10.1016/j.patcog.2023.110113; http://hdl.handle.net/10138/569684; 85177739591; 001124231300001
Dostupnost: http://hdl.handle.net/10138/569684
Full Text Finder
Nájsť tento článok vo Web of Science