Výsledky vyhledávání - (( (statement OR stat) python code analysis ) OR ( (stateeeee OR stavebna) python code analysis ))~

Upřesnit hledání
  1. 1

    Témata: quantum mechanics, Heisenberg uncertainty, Schrödinger equation, Hamzah equation, complex integral, fractal derivative, hidden variable, deterministic physics, classical model, electron hydrogen atom, Bohr radius, reduced Planck constant, electron mass, electron charge, vacuum permittivity, Δx, Δp, uncertainty principle, quantum simulation, numerical example, double-slit experiment, tunneling effect, quantum tunneling, probabilistic interpretation, deterministic interpretation, wavefunction, Born rule, Copenhagen interpretation, path integral, fractal physics, fractal uncertainty, hidden variable χ, atomic orbitals, hydrogen energy levels, quantum probabilities, quantum superposition, quantum states, electron trajectory, quantum dynamics, numerical modeling, graphical simulation, scientific validation, physics comparison, classical uncertainty, exponential decay, s-parameter, fractal dimension, knowledge level, visualisation, plotting, matplotlib, numpy, Python code, computational physics, advanced Python, simulation model, particle physics, quantum electrodynamics, atomic physics, subatomic particle, atomic structure, Bohr model, Planck constant, quantum computation, quantum information, QIS, uncertainty reduction, determinism, Heisenberg principle, Schrödinger model, quantum field theory, quantum system, fractal analysis, hidden dynamics, electron cloud, wave-particle duality, trajectory reconstruction, experimental validation, physics experiment, numerical test, s-values, quantum interference, light wavelength, slit separation, screen distance, intensity pattern, quantum fringes, deterministic fringes, tunneling probability, barrier height, barrier width, particle energy, exponential suppression, classical tunneling, Hamzah tunneling, quantum probability, fractal suppression, s-dependence, quantum-classical comparison, atomic simulation, electron localization, measurement effect, quantum determinism, philosophical implication, Einstein principle, God does not play dice, quantum philosophy, advanced modeling, scientific illustration, computational validation, physics education, research tool, atomic simulation, quantum mechanics validation, probability reduction, trajectory determinism, electron motion, hydrogen atom simulation, microscopic physics, electron dynamics, uncertainty minimization, quantum interpretation, experimental simulation, numerical plotting, double-slit pattern, deterministic pattern, interference fringes, Hamzah model comparison, classical vs Hamzah, scientific graphing, Δx·Δp curve, quantum-classical contrast, wavefunction collapse, electron uncertainty, quantum measurement, deterministic outcome, s-parameter scaling, fractal modeling, hidden variables theory, χ-variable, atomic orbital visualization, atomic physics computation, advanced physics code, Python simulation, electron path modeling, hydrogen energy computation, quantum-classical graph, uncertainty visualization, advanced plotting, fractal uncertainty curve, complex integral application, electron localization calculation, atomic electron dynamics, computational experiment, quantum behavior modeling, Heisenberg test, Schrödinger test, Hamzah simulation, numerical validation, physical constants, electron energy, atomic radius calculation, Bohr radius derivation, Planck constant application, mass-energy relation, electron interaction, fractal analysis physics, hidden variable application, complex trajectory, electron orbit prediction, deterministic physics modeling, advanced physics scenario, Hamzah model verification, quantum to classical transition, quantum determinism analysis, electron trajectory reconstruction, quantum uncertainty analysis, ΔxΔp comparison, electron position momentum, quantum state evolution, fractal dimension effect, knowledge-dependent uncertainty, deterministic path, quantum-classical integration, electron energy levels computation, atomic electron simulation, advanced numerical analysis, Python numerical modeling, matplotlib plotting physics, simulation of hydrogen atom, numerical physics experiments, quantum simulation techniques, Hamzah equation implementation, hidden variable physics, fractal derivative application, complex integral evaluation, atomic-scale modeling, electron dynamics visualization, numerical precision physics, quantum trajectory calculation, double-slit simulation, interference visualization, deterministic fringes visualization, Hamzah vs classical comparison, quantum tunneling simulation, tunneling coefficient calculation, exponential decay tunneling, classical tunneling probability, Hamzah tunneling probability, quantum-classical tunneling, s-dependent tunneling, electron barrier interaction, quantum barrier simulation, atomic physics numerical test, numerical modeling in physics, quantum-classical experiments, simulation of ΔxΔp, uncertainty reduction analysis, deterministic electron trajectory, fractal physics simulation, hidden variable validation, complex integral in physics, electron path visualisation, atomic electron path, Bohr orbit modeling, advanced simulation techniques, Python computational physics, numerical physics modeling, hydrogen atom analysis, ΔxΔp calculation, quantum uncertainty minimization, Hamzah model demonstration, electron probability cloud, electron localization analysis, s-parameter impact, fractal trajectory, deterministic quantum mechanics, quantum determinism illustration, advanced atomic physics, computational quantum mechanics, numerical physics research, physics education tool, scientific Python code, visualisation of uncertainty, electron behavior simulation, atomic-scale precision, quantum measurement modeling, deterministic simulation, quantum experimental validation, Hamzah numerical test, classical numerical test, Δx·Δp visualisation, electron orbit comparison, hydrogen atom simulation, fractal uncertainty modeling, hidden variable analysis, advanced physics plotting, Hamzah uncertainty calculation, classical uncertainty calculation, quantum vs Hamzah, electron trajectory analysis, numerical results comparison, graphical physics representation, electron dynamics charting, atomic physics visualization, advanced Python simulation, fractal dimension modeling, deterministic quantum simulation, classical vs deterministic comparison, quantum-classical overlay, simulation graph analysis, ΔxΔp trend, s-dependence visualization, knowledge-based uncertainty, atomic electron trajectory, quantum-to-deterministic mapping, electron momentum analysis, electron position analysis, trajectory vs uncertainty, deterministic physics visualization, Hamzah validation, classical validation, numerical physics experiments, simulation framework, advanced computational scenario, atomic orbitals visualization, atomic simulation Python, numerical modeling Python, computational modeling Python, quantum mechanics advanced, physics advanced modeling, simulation of electron, hydrogen electron visualization, electron orbital simulation, quantum wavefunction modeling, advanced physics computation, fractal physics implementation, hidden variable incorporation, complex integral computation, atomic structure simulation, electron position modeling, electron momentum modeling, trajectory reconstruction analysis, numerical verification, deterministic universe, quantum determinism confirmation, Einstein verification, probabilistic reduction, atomic-scale modeling, electron motion plotting, uncertainty decay, exponential uncertainty reduction, s-scaling impact, atomic precision simulation, electron localization precision, quantum-classical comparison graph, simulation of tunneling, classical vs Hamzah tunneling, electron barrier simulation, atomic physics numerical validation, quantum physics numerical modeling, physics Python simulation, numerical precision simulation, advanced simulation graphing, electron uncertainty evaluation, ΔxΔp comparison chart, simulation of electron path, atomic simulation numerical test, deterministic trajectory verification, complex integral application in atomic physics, fractal derivative impact, s-parameter effect, Hamzah scenario demonstration, quantum to deterministic transition, electron dynamics verification, classical physics vs Hamzah, atomic-scale electron modeling, advanced simulation framework, numerical visualization, simulation reproducibility, deterministic hydrogen atom model, computational physics validation, simulation scenario Python, electron path plotting, atomic physics computational code, hydrogen electron modeling Python, electron orbital path, deterministic quantum mechanics modeling, advanced atomic simulation, numerical precision Python, quantum-classical comparison demonstration, Hamzah numerical results, atomic physics scenario, simulation verification, numerical comparison, ΔxΔp calculation Python, advanced plotting Python, electron path reconstruction, quantum mechanics illustration, hydrogen atom numerical analysis, numerical physics demonstration, simulation code Python, deterministic electron simulation, fractal trajectory analysis, electron behavior visualization, numerical simulation framework, quantum determinism verification, s-dependent uncertainty modeling, Hamzah model graph, electron orbital visualisation, atomic precision modeling, advanced electron trajectory, electron motion charting, fractal physics Python, hidden variable χ application, complex integral simulation, atomic electron verification, deterministic trajectory illustration, quantum uncertainty comparison, classical ΔxΔp analysis, Hamzah ΔxΔp analysis, numerical experiment Python, advanced physics Python code, quantum-classical validation, electron orbit comparison chart, atomic physics numerical simulation, electron dynamics simulation, trajectory analysis Python, hydrogen atom experiment Python, electron localization demonstration, electron probability cloud visualization, atomic trajectory simulation, electron motion verification, advanced numerical physics, Hamzah equation simulation, simulation of Δx·Δp, graphical simulation Python, electron uncertainty Python, deterministic path verification, electron motion modeling, classical vs Hamzah numerical, atomic simulation scenario, numerical hydrogen atom simulation, simulation verification Python, atomic physics trajectory plotting, electron orbit simulation Python, advanced quantum physics modeling, deterministic trajectory Python, Hamzah validation scenario, classical validation scenario, advanced physics visualization, electron trajectory numerical, hydrogen atom visualization, atomic orbit numerical, electron motion experiment, quantum-classical overlay Python, deterministic hydrogen electron, ΔxΔp scenario Python, fractal derivative simulation, complex integral modeling, s-parameter visualization, Hamzah scenario graph, quantum-classical comparison Python, advanced simulation visualization, numerical simulation graph, electron behavior analysis Python, atomic orbit plotting, electron momentum visualization, Δx·Δp chart, deterministic quantum Python, electron trajectory demonstration, atomic electron motion Python, hydrogen electron path modeling, numerical scenario validation, quantum-classical scenario Python, atomic physics modeling Python, electron uncertainty visualization, Hamzah scenario validation, simulation of tunneling Python, classical vs Hamzah tunneling Python, deterministic electron behavior, advanced atomic visualization, numerical electron path, Δx·Δp comparison visualization, simulation code demonstration, electron orbital comparison, atomic physics simulation Python, advanced simulation techniques Python, quantum deterministic illustration, electron motion simulation Python, Hamzah numerical verification, classical numerical verification, simulation of electron motion, electron position trajectory, Δx·Δp trend visualization, hydrogen atom scenario modeling, electron trajectory analysis Python, Hamzah scenario demonstration Python, atomic-scale simulation Python, quantum-classical determinism, electron orbital trajectory, numerical physics demonstration Python, deterministic hydrogen electron path, advanced computational modeling, atomic physics simulation Python, Hamzah model numerical demonstration, simulation of electron trajectory, fractal trajectory Python, electron momentum trajectory, Δx·Δp visualization Python, simulation of hydrogen electron, numerical physics analysis Python, electron localization analysis Python, Hamzah equation Python, advanced scenario modeling Python, deterministic electron trajectory Python, atomic-scale modeling Python

  2. 2

    Témata: quantum mechanics, Heisenberg uncertainty, Schrödinger equation, Hamzah equation, complex integral, fractal derivative, hidden variable, deterministic physics, classical model, electron hydrogen atom, Bohr radius, reduced Planck constant, electron mass, electron charge, vacuum permittivity, Δx, Δp, uncertainty principle, quantum simulation, numerical example, double-slit experiment, tunneling effect, quantum tunneling, probabilistic interpretation, deterministic interpretation, wavefunction, Born rule, Copenhagen interpretation, path integral, fractal physics, fractal uncertainty, hidden variable χ, atomic orbitals, hydrogen energy levels, quantum probabilities, quantum superposition, quantum states, electron trajectory, quantum dynamics, numerical modeling, graphical simulation, scientific validation, physics comparison, classical uncertainty, exponential decay, s-parameter, fractal dimension, knowledge level, visualisation, plotting, matplotlib, numpy, Python code, computational physics, advanced Python, simulation model, particle physics, quantum electrodynamics, atomic physics, subatomic particle, atomic structure, Bohr model, Planck constant, quantum computation, quantum information, QIS, uncertainty reduction, determinism, Heisenberg principle, Schrödinger model, quantum field theory, quantum system, fractal analysis, hidden dynamics, electron cloud, wave-particle duality, trajectory reconstruction, experimental validation, physics experiment, numerical test, s-values, quantum interference, light wavelength, slit separation, screen distance, intensity pattern, quantum fringes, deterministic fringes, tunneling probability, barrier height, barrier width, particle energy, exponential suppression, classical tunneling, Hamzah tunneling, quantum probability, fractal suppression, s-dependence, quantum-classical comparison, atomic simulation, electron localization, measurement effect, quantum determinism, philosophical implication, Einstein principle, God does not play dice, quantum philosophy, advanced modeling, scientific illustration, computational validation, physics education, research tool, atomic simulation, quantum mechanics validation, probability reduction, trajectory determinism, electron motion, hydrogen atom simulation, microscopic physics, electron dynamics, uncertainty minimization, quantum interpretation, experimental simulation, numerical plotting, double-slit pattern, deterministic pattern, interference fringes, Hamzah model comparison, classical vs Hamzah, scientific graphing, Δx·Δp curve, quantum-classical contrast, wavefunction collapse, electron uncertainty, quantum measurement, deterministic outcome, s-parameter scaling, fractal modeling, hidden variables theory, χ-variable, atomic orbital visualization, atomic physics computation, advanced physics code, Python simulation, electron path modeling, hydrogen energy computation, quantum-classical graph, uncertainty visualization, advanced plotting, fractal uncertainty curve, complex integral application, electron localization calculation, atomic electron dynamics, computational experiment, quantum behavior modeling, Heisenberg test, Schrödinger test, Hamzah simulation, numerical validation, physical constants, electron energy, atomic radius calculation, Bohr radius derivation, Planck constant application, mass-energy relation, electron interaction, fractal analysis physics, hidden variable application, complex trajectory, electron orbit prediction, deterministic physics modeling, advanced physics scenario, Hamzah model verification, quantum to classical transition, quantum determinism analysis, electron trajectory reconstruction, quantum uncertainty analysis, ΔxΔp comparison, electron position momentum, quantum state evolution, fractal dimension effect, knowledge-dependent uncertainty, deterministic path, quantum-classical integration, electron energy levels computation, atomic electron simulation, advanced numerical analysis, Python numerical modeling, matplotlib plotting physics, simulation of hydrogen atom, numerical physics experiments, quantum simulation techniques, Hamzah equation implementation, hidden variable physics, fractal derivative application, complex integral evaluation, atomic-scale modeling, electron dynamics visualization, numerical precision physics, quantum trajectory calculation, double-slit simulation, interference visualization, deterministic fringes visualization, Hamzah vs classical comparison, quantum tunneling simulation, tunneling coefficient calculation, exponential decay tunneling, classical tunneling probability, Hamzah tunneling probability, quantum-classical tunneling, s-dependent tunneling, electron barrier interaction, quantum barrier simulation, atomic physics numerical test, numerical modeling in physics, quantum-classical experiments, simulation of ΔxΔp, uncertainty reduction analysis, deterministic electron trajectory, fractal physics simulation, hidden variable validation, complex integral in physics, electron path visualisation, atomic electron path, Bohr orbit modeling, advanced simulation techniques, Python computational physics, numerical physics modeling, hydrogen atom analysis, ΔxΔp calculation, quantum uncertainty minimization, Hamzah model demonstration, electron probability cloud, electron localization analysis, s-parameter impact, fractal trajectory, deterministic quantum mechanics, quantum determinism illustration, advanced atomic physics, computational quantum mechanics, numerical physics research, physics education tool, scientific Python code, visualisation of uncertainty, electron behavior simulation, atomic-scale precision, quantum measurement modeling, deterministic simulation, quantum experimental validation, Hamzah numerical test, classical numerical test, Δx·Δp visualisation, electron orbit comparison, hydrogen atom simulation, fractal uncertainty modeling, hidden variable analysis, advanced physics plotting, Hamzah uncertainty calculation, classical uncertainty calculation, quantum vs Hamzah, electron trajectory analysis, numerical results comparison, graphical physics representation, electron dynamics charting, atomic physics visualization, advanced Python simulation, fractal dimension modeling, deterministic quantum simulation, classical vs deterministic comparison, quantum-classical overlay, simulation graph analysis, ΔxΔp trend, s-dependence visualization, knowledge-based uncertainty, atomic electron trajectory, quantum-to-deterministic mapping, electron momentum analysis, electron position analysis, trajectory vs uncertainty, deterministic physics visualization, Hamzah validation, classical validation, numerical physics experiments, simulation framework, advanced computational scenario, atomic orbitals visualization, atomic simulation Python, numerical modeling Python, computational modeling Python, quantum mechanics advanced, physics advanced modeling, simulation of electron, hydrogen electron visualization, electron orbital simulation, quantum wavefunction modeling, advanced physics computation, fractal physics implementation, hidden variable incorporation, complex integral computation, atomic structure simulation, electron position modeling, electron momentum modeling, trajectory reconstruction analysis, numerical verification, deterministic universe, quantum determinism confirmation, Einstein verification, probabilistic reduction, atomic-scale modeling, electron motion plotting, uncertainty decay, exponential uncertainty reduction, s-scaling impact, atomic precision simulation, electron localization precision, quantum-classical comparison graph, simulation of tunneling, classical vs Hamzah tunneling, electron barrier simulation, atomic physics numerical validation, quantum physics numerical modeling, physics Python simulation, numerical precision simulation, advanced simulation graphing, electron uncertainty evaluation, ΔxΔp comparison chart, simulation of electron path, atomic simulation numerical test, deterministic trajectory verification, complex integral application in atomic physics, fractal derivative impact, s-parameter effect, Hamzah scenario demonstration, quantum to deterministic transition, electron dynamics verification, classical physics vs Hamzah, atomic-scale electron modeling, advanced simulation framework, numerical visualization, simulation reproducibility, deterministic hydrogen atom model, computational physics validation, simulation scenario Python, electron path plotting, atomic physics computational code, hydrogen electron modeling Python, electron orbital path, deterministic quantum mechanics modeling, advanced atomic simulation, numerical precision Python, quantum-classical comparison demonstration, Hamzah numerical results, atomic physics scenario, simulation verification, numerical comparison, ΔxΔp calculation Python, advanced plotting Python, electron path reconstruction, quantum mechanics illustration, hydrogen atom numerical analysis, numerical physics demonstration, simulation code Python, deterministic electron simulation, fractal trajectory analysis, electron behavior visualization, numerical simulation framework, quantum determinism verification, s-dependent uncertainty modeling, Hamzah model graph, electron orbital visualisation, atomic precision modeling, advanced electron trajectory, electron motion charting, fractal physics Python, hidden variable χ application, complex integral simulation, atomic electron verification, deterministic trajectory illustration, quantum uncertainty comparison, classical ΔxΔp analysis, Hamzah ΔxΔp analysis, numerical experiment Python, advanced physics Python code, quantum-classical validation, electron orbit comparison chart, atomic physics numerical simulation, electron dynamics simulation, trajectory analysis Python, hydrogen atom experiment Python, electron localization demonstration, electron probability cloud visualization, atomic trajectory simulation, electron motion verification, advanced numerical physics, Hamzah equation simulation, simulation of Δx·Δp, graphical simulation Python, electron uncertainty Python, deterministic path verification, electron motion modeling, classical vs Hamzah numerical, atomic simulation scenario, numerical hydrogen atom simulation, simulation verification Python, atomic physics trajectory plotting, electron orbit simulation Python, advanced quantum physics modeling, deterministic trajectory Python, Hamzah validation scenario, classical validation scenario, advanced physics visualization, electron trajectory numerical, hydrogen atom visualization, atomic orbit numerical, electron motion experiment, quantum-classical overlay Python, deterministic hydrogen electron, ΔxΔp scenario Python, fractal derivative simulation, complex integral modeling, s-parameter visualization, Hamzah scenario graph, quantum-classical comparison Python, advanced simulation visualization, numerical simulation graph, electron behavior analysis Python, atomic orbit plotting, electron momentum visualization, Δx·Δp chart, deterministic quantum Python, electron trajectory demonstration, atomic electron motion Python, hydrogen electron path modeling, numerical scenario validation, quantum-classical scenario Python, atomic physics modeling Python, electron uncertainty visualization, Hamzah scenario validation, simulation of tunneling Python, classical vs Hamzah tunneling Python, deterministic electron behavior, advanced atomic visualization, numerical electron path, Δx·Δp comparison visualization, simulation code demonstration, electron orbital comparison, atomic physics simulation Python, advanced simulation techniques Python, quantum deterministic illustration, electron motion simulation Python, Hamzah numerical verification, classical numerical verification, simulation of electron motion, electron position trajectory, Δx·Δp trend visualization, hydrogen atom scenario modeling, electron trajectory analysis Python, Hamzah scenario demonstration Python, atomic-scale simulation Python, quantum-classical determinism, electron orbital trajectory, numerical physics demonstration Python, deterministic hydrogen electron path, advanced computational modeling, atomic physics simulation Python, Hamzah model numerical demonstration, simulation of electron trajectory, fractal trajectory Python, electron momentum trajectory, Δx·Δp visualization Python, simulation of hydrogen electron, numerical physics analysis Python, electron localization analysis Python, Hamzah equation Python, advanced scenario modeling Python, deterministic electron trajectory Python, atomic-scale modeling Python

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Přispěvatelé: 黃靖峰 Huang, Ching-Feng 周國華 a další

    Popis souboru: 4644188 bytes; application/pdf

    Relation: 中文文獻: [1]林東清,2023,資訊管理-智慧化企業的核心競爭能力,第八版,智勝文化事業有限公司。 [2]劉順仁、王俊凱、李季澄、黃宇翔,2020,機器學習與會計科目判斷—台灣半導體公司使用人工智慧提升行政效率個案對會計教育之啟示,中華會計學刊,第17卷第2期: 245–268。 [3]臺灣證券交易所股份有限公司,2024,臺灣證券交易所股份有限公司審閱上市公司財務報告作業程序。 英文文獻-網站: [1]Anghel, I., October 17, 2023, PwC Offers Advice from Bots in Deal with ChatGPT Firm OpenAI, Bloomberg Retrieved June 2 2024, from https://www.bloomberg.com/news/articles/2023-10-17/pwc-offers-advice-from-bots-in-deal-with-chatgpt-firm-openai?embedded-checkout=true [2]Faggella, D., 2020, AI in the Accounting Big Four – Comparing Deloitte, PwC, KPMG, and EY, Emerj Artificial Intelligence Research Retrieved June 2 2024, from https://emerj.com/ai-sector-overviews/ai-in-the-accounting-big-four-comparing-deloitte-pwc-kpmg-and-ey/ [3]Rozario, A. M., Zhang, A., & Vasarhelyi, M. A.,2019, Examining Automation in Audit, International Federation of Accountants, Retrieved from https://www.ifac.org/knowledge-gateway/preparing-future-ready-professionals/discussion/examining-automation-audit [4]Sanders, T., January 20, 2023, how to work with large language models, OpenAi Retrieved June 2 2024, from https://cookbook.openai.com/articles/how_to_work_with_large_language_models 英文文獻-學術期刊: [1]Baldwin, A. A., Brown, C. E., Trinkle, B. S. 2006. Opportunities for artificial intelligence development in the accounting domain: the case for auditing. Intelligent Systems in Accounting, Finance and Management 14(3): 77–86 [2]Chan, D. Y., Vasarhelyi, M. A. 2011. Innovation and practice of continuous auditing. International Journal of Accounting Information Systems 12 (2): 152–160 [3]Earley, C. E. 2015. Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(3): 493–500 [4]Huang, F., Vasarhelyi, M. A.2019.Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems 35 [5]Jacobs, F. R., Weston, F. C., Jr. 2007. Enterprise resource planning (ERP)—A brief history. Journal of Operations Management 25: 357–363 [6]Kogan, A., Mayhew, B. W., Vasarhelyi, M. A.2019. Audit Data Analytics Research—An Application of Design Science Methodology. Accounting Horizons 33(3):69–73 [7]March, S. T., G. F. Smith. 1995. Design and natural science research information technology. Decision Support Systems 15 (4): 251–266 [8]Peffers, K., Tuunanen, T., Rothenberger, M. A., Chatterjee, S. 2007. A Design Science Research Methodology for Information Systems Research Journal of Management Information Systems 24(3): 45–77 [9]Xu, Y. 2024. A Study on the Application of Python in Corporate Financial Analysis. Frontiers in Business, Economics and Management 15(2):31–36 英文文獻-書籍: [1]Baan, J. 2005. The Way to Market Leadership. Vanenburg Group. [2]Simon, H. A. 1969. The Sciences of the Artificial. 3rd ed. The MIT Press.; G0111353107; https://nccur.lib.nccu.edu.tw//handle/140.119/152501; https://nccur.lib.nccu.edu.tw/bitstream/140.119/152501/1/310701.pdf

  12. 12
  13. 13
  14. 14
  15. 15

    Autoři: Gewirtz, Jeffrey

    Témata: information geometry, Surrogate testing, Gravitational wave signal processing, dissipation coupling, entropy flow constraint, signal-to-noise ratio (SNR), error propagation, information theory, wavelet ridge analysis, Lorentzian width estimation, peak detection, bootstrap resampling, mode mixing, breakpoint detection (W*), ringdown window, copula MI, distance correlation, universal ratio F≈1, domain-neutral normalization, Black holes, cross-domain invariance, quantum thermodynamic, Lyapunov, Hilbert space, Lyapunov pathway, Astrophysical detectability, fixed point, theorem, Schumann resonance, ELF fields, recursion operator, 3I/ATLAS, Detector invariance, Information–Energy Symmetry, Resonant Equilibrium, Spectral–Information Coupling, Entropy–Resonance Relationship, Mutual Information Decay Constant, Empirical Universality, Gewirtz Ratio (F ≈ 1), Information–Energy Conservation Law, Resonant Substrate Framework, Informational Thermodynamics, Cross-Scale Correlation, Synthetic Validation Protocol, Open-Science Reproducibility, Python Simulation Framework, Physical Information Theory, Nonlinear Information Dynamics, Statistical Physics of Information, Entropy–Dissipation Invariance, Complex Systems Physics, classification (ROC, confusion matrix), falsifiability, C₀-semigroup, GW150914, complexity theory, resonant substrate, invariant ratio, entropy–information duality, Gewirtz Invariant, Information-theoretic analysis, Gravitational waves, recursion, spectral gap, emergence, Collapse scaling, energy–information law, universal invariant, quasi-normal modes (QNM), spectral linewidth (HWHM), Lorentzian peak fitting, mutual-information decay, spectral decay rate, SNR gating, equivalence testing (TOST), Bayes factors, hierarchical modeling, surrogate null models, ARFIMA, heavy-tailed noise, open quantum systems, Lindblad dissipators, Hilbert envelope, continuous wavelet transform (CWT), reproducible research, provenance tracking, Partition Rendering Hypothesis, Bootstrap confidence intervals, Ringdown analysis, Resonant Substrate Hypothesis, Operator theory, uncertainty propagation, stability, Mutual information, thermodynamic irreversibility, quantum decoherence, Unified Information–Energy Formalism, Statistical validation

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20