Search Results - (((programovy OR programm) OR programovaci) OR programovanie) systeme informaci*
-
1
Authors: Freitas da Mota, Catarina
Contributors: University/Department: Universitat de Girona. Institut Superior d'Estudis Turístics, University/Department: Universitat de Girona. Departament d'Organització, Gestió empresarial i Disseny de producte
Thesis Advisors: Guia, Jaume, Bataillou, Christian
Source: TDX (Tesis Doctorals en Xarxa)
Subject Terms: Desenvolupament local, Desarrollo local, Local development, Sistema turístic, Sistema turístico, Turistic system, Ciutats mitjanes, Ciudades medianas, Medium-sized cities, Atractius turístics, Atractivos turísticos, Tourist attractions, Anàlisi SWOT, Análisis SWOT, SWOT analysis, Europe 2020, Portugal 2020, Norte 2020
File Description: application/pdf
Access URL: http://hdl.handle.net/10803/398792
-
2
Authors: et al.
Contributors: et al.
-
3
Authors:
Source: Revista de Discapacidad, Clínica y Neurociencias; Vol. 6 No 1 (2019); 44-56 ; Revista de Discapacidad, Clínica y Neurociencias; Vol. 6 No. 1 (2019); 44-56 ; Revista de Discapacidad, Clínica y Neurociencias; Vol. 6 Núm. 1 (2019); 44-56 ; 2341-2526 ; 10.14198/DCN.2019.6.1
Subject Terms: Sistemas alternativos de comunicación, Autism spectrum disorder, Information technology, Alternative communication systems, Trastorno del espectro del Autismo, PECS, AUGIE, Tecnologías de la información
Relation: https://revistes.ua.es/dcn/article/view/19237/pdf; https://revistes.ua.es/dcn/article/view/19237
Availability: https://revistes.ua.es/dcn/article/view/19237
-
4
Authors:
Source: Revista General de Información y Documentación; Vol. 31 No. 1 (2021); 437-460 ; Revista General de Información y Documentación; Vol. 31 Núm. 1 (2021); 437-460 ; 1988-2858 ; 1132-1873
Subject Terms: Geographic Information System, GIS, Evaluation, Old cartography, Georeferencing, Sistemas de Información Geográfica, SIG, Evaluación, Cartografía antigua, Georreferenciación
File Description: application/pdf
Relation: https://revistas.ucm.es/index.php/RGID/article/view/76965/4564456558201; Anguix, A.; Díaz, L. (2008). GvSIG: a GIS desktop solution for an open SD. Journal of Geography and Regional Planning, 3 (1), 041-048.; ArcGIS Enterprise. (2020). “Cliente de CSW”. Available from: [Accessed:: 28 Apr 2020]; British Library. (2020). Online Gallery. Georeference home. Available from: [Accessed: 28 Apr 2020].; Calatrava, J.; Ruiz, M. (2005). Los planos de Granada 1500-1909: cartografía urbana e imagen de la ciudad (Vol. 26). Granada: Diputación Provincial de Granada.; Carto. (2020). “Solve spatial problems with the best data and analysis”. Available from: [Accessed: 28 Apr 2020].; Cascón-Katchadourian, J.; Ruiz-Rodríguez, A. Á. (2016). Descripción y valoración del software MapTiler: del mapa escaneado a la capa interactiva publicada en la Web. El profesional de la información, 6 (25), 970-978. https://doi.org/10.3145/epi.2016.nov.13; Cascón-Katchadourian, J.; Ruiz-Rodríguez, A. Á.; Quesada Román, A. (2018a). Georreferenciación y publicación web de cartografía antigua en sistemas de información geográficos: requisitos para su evaluación y estudio de caso. Revista General de Información y Documentación, 1 (28), 193-212.; Cascón-Katchadourian, J.; Ruiz-Rodríguez, A. Á.; Alberich-Pascual, J. (2018b). Uses and applications of georeferencing and geolocation in old cartographic and photographic document management. El profesional de la información, 4 (28). https://doi.org/10.3145/epi.2018.ene.19; Cascón-Katchadourian, J.; López-Herrera, A.G.; Ruiz-Rodríguez, A. Á.; Herrera-Viedma, E. (2019). Proyecto Histocarto, aplicación de SIGs (georreferenciación y geolocalización) para mejorar la recuperación de la documentación histórica gráfica. El profesional de la información, 4 (28), e280416. https://doi.org/10.3145/epi.2019.jul.16; Cortés, J. (2001). El documento cartográfico. In: Jiménez-Pelayo, J.; Monteagudo López-Menchero, J., eds. La documentación cartográfica: Tratamiento, gestión y uso. Huelva: Universidad de Huelva, 39-113.; Dávila, J.; Camacho, E. (2012). Georreferenciación de documentos cartográficos para la gestión de archivos y cartotecas: "propuesta metodológica". Revista Catalana de Geografía, 46 (17), Available from: https://www.rcg.cat/articles.php?id=252[Accessed: 28/04/ 2020].; Escriu-Paradell, J. (2004). “Estudios de relación y conexión entre los elementos de metadatos de las normas ISO 19115 y DUBLIN CORE, e ISO 19115 y MARC21”. In: Jornadas Técnicas de la IDE de España – JIDEE 2004. 4-5 November 2004. Zaragoza. Available from: [Accessed: 28 Apr 2020].; Escudero, A. I.; Recalde, C. G.; Haro, S. M.; Meneses, M. A. (2016). Spline Cúbico para el Tratamiento Funcional de la Radiación Solar Global. Información Tecnológica, 2 (27), 153-162.; Espiago, J. (2001). Documentación cartográfica digital. In: Jiménez-Pelayo, J.; Monteagudo López-Menchero, J., ed. La documentación cartográfica: Tratamiento, gestión y uso. Huelva: Universidad de Huelva, 183-220.; ESRI. (2013a). “¿Qué son los datos ráster?” Available from: [Accessed: 28 Apr 2020].; ESRI. (2013b). Principios básicos de georreferenciación de un dataset ráster. Available from: [Accessed: 28 Apr 2020].; ESRI. (2019a). Formatos de archivo de dataset ráster admitidos. Available from: [Accessed: 28 Apr 2020].; ESRI. (2019b). Archivos de georreferenciación para datasets ráster. Available from: [Accessed: 28 Apr 2020].; ESRI. (2019c). Georreferenciar un ráster automáticamente. Available from: [Accessed: 28 Apr 2020].; ESRI. (2019d). ArcGIS Productos. Available from: /arcgis/productos/> [Accessed: 28 Apr 2020].; Fimiani, M. (1985). Cartografie. In Donatella Mazzoleni (a cura di). La città e l'immaginario, 227. Roma: Officina Edizioni.; Gabri. (2018). Interpolación con la Distancia Inversa Ponderada (IDW). Available from: [Accessed: 28 Apr 2020].; GDAL. (2020). GDA. Available from: [Accessed: 28 Apr 2020].; Getreuer, Pascal. (2011). Linear Methods for Image Interpolation. Image Processing On Line, 1,. 238–259. https://doi.org/10.5201/ipol.2011.g_lmii; GitHub. (2020). ArcBruTil”. Available from: [Accessed: 28 Apr 2020].; GvSIG. (2017). Formatos soportados. Available from: [Accessed: 28 Apr 2020].; GvSIG. (2020). Georreferenciación. Available from: [Accessed: 28 Apr 2020].; GvSIG. (2020b). Introducción y conceptos básicos. Available from: [Accessed: 28 Apr 2020].; GvSIG. (2020c). GvSIG ONLINE 2.0”. Available from: [Accessed: 28 Apr 2020].; Histocarto. (2020). Proyecto Histocarto. Available from: [Accessed: 28 Apr 2020].; Instituto Geográfico Nacional. (2020a). Fondos Cartográficos del Instituto Geográfico Nacional. España. Siglos XVI-XIX. Available from: [Accessed: 28 Apr 2020].; Instituto Geográfico Nacional. (2020b). Comparador de Mapas. Available from: [Accessed: 28 Apr 2020].; Institut National de l´Information Géographique et Forestiére. (2020). Remonter le temps. Available from: [Accessed: 28 Apr 2020].; Institut Cartogràfic i Geològic de Catalunya. (2020). Cartoteca Digital. Georeferenciacio. Available from: [Accessed: 28 Apr 2020].; Jiménez-Pelayo, J.; Bonachera-Cano, F. J. (2001). Recursos de información cartográfica en internet. In: Jiménez-Pelayo, Jesús; Monteagudo-López-Menchero, Jesús, ed. La documentación cartográfica: Tratamiento, gestión y uso. Huelva: Universidad de Huelva, 221-262.; Leaflet. (2019). Leaflet. Available from: [Accessed: 28 Apr 2020].; MappingGIS. (2019). Cómo publicar mapas online con QGIS Cloud. Available from: [Accessed: 28 Apr 2020].; MapTiler. (2020a). Supported formats. Available from: [Accessed: 28 Apr 2020].; MapTiler. (2020b). Map transformations. Available from: [Accessed: 28 Apr 2020].; MapTiler. (2020c). MapTiler Cloud. Online maps and hosting for your products. Available from: [Accessed: 28 Apr 2020].; Maciá-Martínez, M. Á. (2017). Georreferenciación con Gvsig. Available from: http://gvsig.edu.umh.es/2017/03/29/webinar-georreferenciacion-con-gvsig/ [Accessed: 28 Apr 2020].; Morales, A. (2014). Comenzando a trabajar con metadatos en GIS. Available from: [Accessed: 28 Apr 2020].; National Library of Scotland. (2017). NLS Map Georeferencer home page - online map georeferencing pilot programme. Available from: [Accessed: 28 Apr 2020].; New York Public Library. (2020). NYPL Map Warper. Available from: [Accessed: 28 Apr 2020].Nextgis. (2015). QuickMapServices: easy basemaps in QGIS. Available from: [Accessed: 28 Apr 2020].Open Geospatial Consortium. (2020). Welcome to The Open Geospatial Consortium. Available from: [Accessed: 28 Apr 2020].; OpenLayers. (2020). OpenLayers. A high-perfomance, feature-packed library for all your mapping needs. Available from: [Accessed: 28 Apr 2020].; OSGeo. (2014). Panorama SIG Libre 2014/Clientes. Available from: [Accessed: 28 Apr 2020].; QGIS. (2016). Metatools. Available from: [Accessed: 28 Apr 2020].; QGIS. (2018). Class: QgsProjectMetadata. Available from: [Accessed: 28 Apr 2020].; QGIS. (2020a). Complemento georreferenciador. Available from: [Accessed: 28 Apr 2020].; QGIS. (2020b). QGIS como Servidor de Datos OCG. Available from: [Accessed: 28 Apr 2020].; QGIS Cloud. (2020). QGIS Cloud Hosting. Available from: [Accessed: 28 Apr 2020].; Sánchez-Maganto, A.; Nogueras-Iso, J.; Ballari, D. (2008). Normas sobre metadatos (IS019115, ISO19115-2, ISO19139, ISO 15836). In: Ariza-López, Francisco-Javier; Rodríguez-Pascual, Antonio-Federico, eds. Introducción a la normalización en Información Geográfica: la familia ISO 19100. Available from: [Accessed: 28 Apr 2020].; Sánchez-Maganto, A.; Rodríguez-Pascual, A. F.; Abad Power, P.a; Blázquez Vilches, L. M.; Alonso Jiménez, José Ángel. (2006). Situación actual de los metadatos en el ámbito internacional. In: III Jornadas Técnicas de la IDE de España JIDEE2006, 18-20 October 2006 Castellón. Available from: [Accessed: 28 Apr 2020]; Time Machine Atlas. (2020). Time Machine Atlas. Available from: . [Accessed: 28 Apr 2020]; Turkowski, Ken; Apple Computer. (1990). Filters for Common Resampling Tasks. Available from: [Accessed: 28 Apr 2020].; https://revistas.ucm.es/index.php/RGID/article/view/76965
-
5
-
6
Authors: et al.
Contributors: et al.
Subject Terms: Àrees temàtiques de la UPC::Informàtica::Sistemes d'informació, Big data, Privacy, Right of, Information storage and retrieval systems -- Medicine, Architectural framework, Healthcare, Data mesh, Data governance, Data management, Federated data, Dades massives, Dret a la intimitat, Informació -- Sistemes d'emmagatzematge i recuperació -- Medicina
File Description: 10 p.; application/pdf
Relation: https://ceur-ws.org/Vol-3653/paper5.pdf; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117191RB-I00/ES/DESARROLLO, OPERATIVA Y GOBERNANZA DE DATOS PARA SISTEMAS SOFTWARE BASADOS EN APRENDIZAJE AUTOMATICO/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126248OB-I00/ES/DISTRIBUCION DE ANALISIS DE DATOS Y APRENDIZAJE EN TECNOLOGIAS EDGE-SUPERCOMPUTING/; info:eu-repo/grantAgreement/EC/HE/101135513/EU/Automated end-to-end data life cycle management for FAIR data integration, processing and re-use/CyclOps; info:eu-repo/grantAgreement/EC/H2020/952179/EU/A multimodal AI-based toolbox and an interoperable health imaging repository for the empowerment of imaging analysis related to the diagnosis, prediction and follow-up of cancer/INCISIVE; info:eu-repo/grantAgreement/EC/HE/101095717/EU/Scaling Up secure Processing, Anonymization and generation of Health Data for EU cross border collaborative research and Innovation/SECURED; http://hdl.handle.net/2117/409837
Availability: http://hdl.handle.net/2117/409837
-
7
Authors: et al.
Contributors: et al.
Subject Terms: 350 - Administración pública y ciencia militar::351 - Administración pública, 000 - Ciencias de la computación, información y obras generales::003 - Sistemas, 330 - Economía::336 - Finanzas públicas, Sistemas e-government, Valor público, Modelo de evaluación de éxito de SI, Administraciones tributarias, Gestión pública, E-government systems, Public value, IS success evaluation model, Tax administrations, Public management, Tributación, Gobierno electrónico, Taxation, Electronic governance, sistema de pago electrónico, e-commerce payment system
File Description: xvii, 231 páginas; application/pdf
Relation: Abdelsalam, H., & Reddick, G. (2012). Success and Failure of Local E- Government Projects: Lessons Learned from Egypt. En S. Kwamena Aikins, Managing E-Government Projects: Concepts, Issues, and Best Practices.; Abdulkareem, A., & Mohd Ramli, R. (2021). Does trust in e-government influence the performance of e-government? An integration of information system success model and public value theory . Transforming Government: People, Process and Policy, 16(1), 1-17.; Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.; Alhendawi, K., & Baharudin, A. (2017). The Assesment of Information System Effectiveness in e-Learning, e-commerce and e-Government Contexts: A Critical Review and Conceptual Model. . Journal of Theoretical and Applied Information Technology, 95, 4897-4912.; Alhyari, S., Alazab, M., Alazab, A., Venkatraman, S., & Alazab, M. (2013). Performance evaluation of e-government services using balanced scorecard: An empirical study in Jordan. Benchmarking, 20(4), 512–536.; Alkraiji, A. (2020). An examination of citizen satisfaction with mandatory e-government services: comparison of two information systems success models. Transforming Government: People, Process and Policy, 15(1), 36-58.; Al-Naimat, A., & Fraihat, A. (2020). E-Government's Service Quality; User perception Significance and Measurement. International Journal of Computer Science and Network Security, 20(10), 101-107.; Al-Rahmi, W., Uddin, M. &., Aldhlan, K., Cifuentes Faura, J., Al-Rahmi, A., & Al-Adwan, A. (2022). Validation of an Integrated IS Success Model in the Study of E-Government. Mobile Information Systems, 1-16.; Al-Sulami, Z., & Hashim, H. (2018). Measuring the success of e-government systems: Applying the success model of the delone and mclean information system. Journal of Theoretical and Applied Information Technology, 96(22), 7654-7670.; Althonayan, M., & Althonayan, A. (2017). E-government system evaluation: The case of users’ performance using ERP systems in higher education. Transforming Government: People, Process and Policy, 11(3), 306-342. Doi: https://doi.org/10.1108/TG-11-2015-0045.; Alzahrani, L., Al-Karaghouli, W., & Weerakkody, V. (2018). Investigating the impact of citizens’ trust toward the successful adoption of e-government: A multigroup analysis of gender, age, and internet experience. Information Systems Management, 35(2), 124–146. https://doi.org/10.1080/10580530.2018.1440730.; AL-Zahrani, M. (2020). Integrating IS success model with cybersecurity factors for e-government implementation in the Kingdom of Saudi Arabia. International Journal of Electrical and Computer Engineering, 10 (5), 4937-4955- Doi: http://doi.org/10.11591/ijece.v10i5.pp4937-4955.; Andersen, K. N., Henriksen, H. Z., Medaglia, R., Danziger, J. N., Sannarnes, M. K., & Enemærke, M. (2010). Fads and Facts of e-Government: A Review of Impacts of e-Government (2003–2009). International Journal of Public Administration 33(11), 564–579.; Anwer Anwer, M., Esichaikul, V., Rehman, M., & Anjum, M. (2016). E-government services evaluation from citizen satisfaction perspective: A case of Afghanistan. Transforming Government: People, Process and Policy, 139-167. Doi: https://doi.org/10.1108/TG-03-2015-0017.; Bailey, J., & Pearson, S. (1983). Development of a tool for measuring and analyzing computer. Management Science., 29(5), 530–545.; Bakon, K. A., & Elias, N. F. (2020). Culture and Digital Divide Influence on E-Government Success of Developing Countries: A Literature Review. Journal of Theoretical and Applied Information Technology, 1362-1378.; Bannister, F., & Connolly, R. (2014). ICT, Public values and transformative government: A framework and programme for Research. Government Information Quartely, 31(1), 119-128.; Barbosa, A. F., Pozzebon, M., & Diniz, E. H. (2013). Rethinking E-Government Performance Assessment from a Citizen Perspective. Public Administration, 91(3), 744-762.; Benington, J., & Moore, M. H. (2011). Public Value Theory & Practice. PALGRAVE MACMILLAN.; Bhaskar, R. (1975). A realist theory of science. Harvester Press, 284.; Bhaskar, R. (2008). A Realist Theory of Science. Londres: Routledge.; Bhaskar, R. (2011). Reclaiming Reality: A Critical Introduction to Contemporary Philosophy. Abingdon: Routledge.; Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370.; Bryson, J., Crosby, B., & Bloomberg, L. (2014). Public Value Governance: Moving Beyond Traditional Public Administration and the New Public Management. Public Administration Review, 74(4), 445-456.; Byrd, T., Thrasher, E., Lang, T., & Davidson, N. (2006). A process-oriented perspective of IS success: examining the impact of IS on operational cost. Omega 34(5), 448–460.; Canales Cerón, M. (2006). Metodologías de investigación social . Santiago de Chile: LOM Ediciones.; Carrera Mora, O. Y., Villafuerte Valdés, L. F., Romero León, D. A., & Reyes Mendoza, S. (2021). Local e-government in México in times of covid-19. Revista Venezolana de Gerencia, 26(94), 678-695.; Castañeda Rodríguez, V. M. (2012). UNA REVISIÓN DE LOS DETERMINANTES DE LA ESTRUCTURA Y EL RECAUDO TRIBUTARIO: EL CASO LATINOAMERICANO TRAS LA CRISIS DE LA DEUDA EXTERNA. Cuadernos de Economía, 31(58), 77-112.; Católico Segura, D., Suárez Barreto, S. Y., & Velandia Espitia, J. P. (2016). El gobierno electrónico en las administraciones tributarias de America Latina. Logos Ciencia & Tecnología, 7(2), 50-65.; Cebreiro López, B., & Fernández Morante, M. (2004). Estudio de casos. En F. Salvador Mata, J. L. Rodríguez Diéguez, & A. Bolívar Botia, Diccionario enciclopédico de didáctica. Málaga: Aljibe.; CEPAL. (2011). El gobierno electrónico en la gestión pública. Santiago de Chile: Naciones Unidas.; Chae, H. C. (2007). IS success model and perceived IT value. Association for Information Systems. 13th Americas Conference on Information Systems, AMCIS 2007: Reaching New Heights, 7, (págs. 4808–4813).; Chan, S. C., & Ngai, E. W. (2007). A qualitative study of information technology adoption: How ten organizations adopted web-based training. Information Systems Journal, 17(3).; Chen, J. V., Jubilado, R. J., Capistrano, E. P., & Yen, D. C. (2015). Factors affecting online tax filing – An application of the IS success model and trust theory. Computer in Human Behavior,43, 251–262. Doi: https://doi.org/10.1016/j.chb.2014.11.017.; Chen, S.-C., Wu, C.-C., & Miau, S. (2015). Constructing an integrated e-invoice system: The Taiwan experience. Transforming Government: People, Process and Policy, 370-383.; Cochcrane Iberoamérica. (01 de 05 de 2005). https://es.cochrane.org/es. Obtenido de https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/glosario_manual_cochrane_425.pdf; Córdoba, J.-R. (2014). Systemic patterns of practice to improve e-government evaluation. Public Administration and Information Technology, 5, 9-24.; Creswell, J., & Plano Clark, V. (2011). Designing and Conducting Mixed Methods Research. Los Angeles: Sage Publications.; Davis, F. D., Bagozzi, R. P., & Warshaw, P. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003.; DeLone, W., & McLean, E. (1992). information Systems Success: The Quest for the Dependent Variable. Journal of Management Information Systems, 3(4), 60-95.; DeLone, W., & McLean, E. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4) , 9-30.; Deng, H., Karunasena, K., & Xu, W. (2018). Evaluating the performance of e-Government in developing countries: A public value perspective. Internet Research, 28(1), 169–190. Doi: https://doi.org/10.1108/IntR-10-2016-0296.; DIAN. (08 de 12 de 2021). www.dian.gov.co. Obtenido de dian.gov.co/dian/cifras/Paginas/TributosDIAN.aspx; Díaz-Bravo, L., Torruco-García, U., Martínez-Hernández, M., & Varela Ruiz, M. (2013). La entrevista, recurso flexible y dinámico. Metodología de investigación en educación médica, 162-167.; Doll, W., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. MIS Quarterly, 259–275.; Easton, G., & Harrison, D. (2004). Temporally Embedded Case Comparison in Industrial Marketing Research. En S. Fleetwood, & S. Ackroyd, Critical Realism Applications in Organization and Management Studies (págs. 194-210). Londres: Routledge.; Edmonds, W. A., & Kennedy, T. D. (2016). Exploratory – Sequential Aproach. En W. A. Edmonds, An applied guide to research designs: Quantitative, qualitative, and mixed methods (págs. 201 – 207). Los Angeles: Sage.; Ella, W. (2020). ASSESSING CORRELATION ON E-GOVERNMENT AND TRUST AT LOCAL LEVEL IN DEVELOPING COUNTRIES. Proceedings on Engineering Sciences 2(3), 237-246.; Escobar Pérez, J., & Cuervo Martínez, A. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances en Medición (6) 1, 27-36.; Fernández-Santillán, J. (2018). Valor público, gobernanza y Tercera Vía. Convergencia , 175-193.; Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. Addison-Wesley Publication Company.; Fiske, S. T., Cuddy, A. J., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. Journal of Personality and Social Psychology, 82, 878-902.; Floropoulos, J., Spathis, C., Halvatzis, D., & Tsipouridou, M. (2010). Measuring the success of the Greek Taxation Information System. International Journal of Information Management 30, 47–56.; Fu, J. R., Farn, C. K., & Chao, W. P. (2006). Acceptance of electronic tax filing: a study of taxpayer intentions. . Informantion & Management, 43., 109-126.; Furuholt, B., & Wahid, F. ( 2008). E-Government Challenges and the Role of Political Leadership in Indonesia: The Case of Sragen. Proceedings of the 41st Annual Hawaii International Conference on System Sciences. Waikoloa, HI, USA: IEEE.; Gable, G. G., Sedera, D., & Chan, T. (2008). Re-conceptualizing Information System Success: The IS-Impact Measurement Model. Journal of the Association for Information Systems, 9(7), 377-408.; Garcia-Peñalvo, F. J. (2022). Desarrollo de estados de la cuestión robustos: Revisiones Sistemáticas de Literatura. Education in the Knowledge Society, 23, 1-22. https://doi.org/10.14201/eks.28600 %7C e28600.; Gatian, A. (1994). Is user satisfaction a valid measure of system effectiveness? Information & Management, 26(3), 119–131.; Gemoets, L., Mahmood, M., Adenso-Díaz, B., & Gonzalez, P. (2011). A cross-national comparison of e-government success measures: A theory-based empirical research. International Journal of Electronic Governance, 184-208.; Goh, J. M., & Arenas, A. E. (2020). IT Value Creation in Public Sector: How IT-Enabled Capabilities Mitigate Tradeoffs in Public Organisations. European Journal of Information Systems, 29(1), 25–43.; Gómez Sabaini, J.C.; Morán, D. (2020). Estrategias para abordar la evasión tributaria en América Latina y el Caribe: avances en su medición y panorama de las medidas recientes para reducir su magnitud. Santiago de Chile: Comisión Económica para América Latina y el Caribe (CEPAL).; Gonzalez, R., Gasco, J., & Llopis, J. (2007). E-government success: some principles from a Spanish case study. Industrial Management & Data Systems, 107(6), 845-861.; Goodhue, D., & Thompson, R. (1995). Task-technology fit and individual performance. MIS Quaterly, 19(2), 213–236.; Grimsley, M., & Meehan, A. (2007). e-Government information systems: Evaluation-led design for public value and client trust. European Journal of Information Systems, 16(2), 134-148.; Grover, V., Lyytinen, K., Srinivasan, A., & Tan, B. (2008). Contributing to Rigorous and Forward Thinking Explanatory Theory. Journal of the Association for Information Systems, 9, 40-47.; Gupta, K. P., Singh, S., & Bhaskar, P. (2016). Citizen Adoption of e-Government: A Literature Review and Conceptual Framework. Electronic Government, an International Journal 12(2), 160–85.; Gupta, M. P., & Jana, D. (2003). E-government evaluation: a framework and case study. Government Information Quarterly, 20, 365–387.; Habermas, J. (1984). Teoría de la acción comunicativa. Volumen 1 y 2. . Boston, Massachussets: Beacon Press Books.; Hair, J. F., Ringle, C. M., Sarstedt, M., Hult, T., Danks, N., & Soumya, R. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A workbook. Cham, Switzerland: Springer.; Hefetz, A., & Warner, M. (2004). Privatization and its reverse: explaining the dynamics of the government contracting process. Journal of Public Administration Research & Theory 14(2), 171–190.; Henman, P. (2010). Governing Electronically: E-Government and the Reconfiguration of Public Administration, Policy and Power. Basingstoke: Palgrave MacMillan.; Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.; Hidayat Ur Rehman, I., Ali Turi, J., Rosak-Szyrocka, J., Alam, M., & Pilař, L. (2023). The role of awareness in appraising the success of E-government systems. Cogent Business & Management, 10, Doi: https://doi.org/10.1080/23311975.2023.2186739.; Hooda, A., Gupta, P., Jeyaraj, A., & Dwivedi, Y. K. (2023). Clarifying the role of e-Government Trust in e-Government Success Models: A Meta-Analytic Structural Equation Modeling Approach. Australasian Journal of Information Systems, 27, Doi: https://doi.org/10.3127/ajis.v27i0.4079.; Horan, T. A., Abhichandani, T., & Rayalu, R. (2006). Assessing user satisfaction of egovernment services: development and testing of quality-in-use satisfaction with advanced traveler information systems (ATIS). Proceedings of the 39th Annual Hawaii International Conference on the System Sciences (HICSS’06).; Hu, G., Lin, H., & Pan, W. (2013). Conceptualizing and Examining e-Government Service Capability: A Review and Empirical Study. Journal of the American Society for Information Science and Technology 64(11), 2379-2395.; Huang, Z., & Benyoucef, M. (2014). Usability and Credibility of E-Government Websites. Government Information Quarterly, 584-595.; Ibbott, C. J., & O’Keefe, R. M. (2004). Trust, planning and benefits in a global interorganizational system. Information Systems Journal 14(2), 131–152.; Idoughi, D., & Abdelhakim, D. (2018). Developing Countries E-Government Services Evaluation Identifying and Testing Antecedents of Satisfaction Case of Algeria. International Journal Of Electronic Government Research, 14(1), 63-85.; International Telecommunication Union. (2024). Measuring digital development: The ICT Development Index 2024. Ginebra: ITU Publications.; İskender, G., & Özkan, S. (2015). Analysis of success factors in e-government transformation in Turkey: are these factors really the causes of success?. Information Development, 323-332.; Jaimes Martínez, C. P. (2020). ADOPCIÓN DE LA FACTURACIÓN ELECTRÓNICA Y SU INFLUENCIA EN LA ORGANIZACIÓN. CASO DE ESTUDIO: ENTIDAD DEL SECTOR AGROPECUARIO. Bogotá D.C., Colombia: Universidad Nacional de Colombia.; Jaimes Martínez, C. P., & Díaz Pínzón, B. H. (2022). Success evaluation model of E-government systems for tax administrations: Recognizing the public value from the taxpayer's perspective. 17th Iberian Conference on Information Systems and Technologies (CISTI). Madrid: IEEE. DOI:10.23919/CISTI54924.2022.9820607.; Jeyaraj, A. (2020). DeLone & McLean models of information system success: Critical metareview and research directions. International Journal of Information Management, 54, 102139. Doi: https://doi.org/10.1016/j.ijinfomgt.2020.102139.; Jonker, J., & Pennink, B. (2010). Conceptual Models. En J. Jonker, & B. Pennink, The Essence of Research Methodology (págs. 43-63). Berlin Heidelberg: Springer-Verlag.; Jørgensen, T. B., & Bozeman, B. (2007). Public values – an inventory. Administration & Society, 39(3), 354-381.; Kaisara, G., & Pather, S. (2011). The e-Government evaluation challenge: A South African Batho Pele-aligned service quality approach. Government Information Quarterly, 28(2), 211-221.; Kaliannan, M., Raman, M., & Dorasamy, M. (2010). Citizens and E-Government: Evaluating Policy and Management. Capitulo: Assessing e-Government Services: The Case of e-Filing of Personal Income Tax in Malaysia. 317-333: IGI GLOBAL.; Keutel, M., Michalik, B., & Richter, J. (2014). Towards mindful case study research in IS: a critical analysis of the past ten years. European Journal of Information Systems, 23., 256–272.; Khatib, H., Lee, H., Suh, C., & Weerakkody, V. (2019). e-Government systems success and user acceptance in developing countries: The role of perceived support quality. Asia Pacific Journal of Information Systems, 29(1), 1-34.; Kilani, Y. M. (2021). The moderating role of innovation valance between adoption and actual use of e-government services: an extension of DeLone and McLean information success model. International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, 26(3), 273-295.; Klamo, L., Huang, W., Wang, K., & Le, T. (2006). Successfully implementing e-government: Fundamental issues and a case study in the USA. Electronic Government, 3(2), 158-173.; Koh, C., & Prybutok, V. (2003). The three ring model and development of an instrument for measuring dimensions of e-government functions. Journal of Computer Information Systems, 34-39.; Laudon, K. C., & Laudon, J. (2016). Sistemas de información gerencial. Décimocuarta edición. México: PEARSON EDUCACIÓN.; Leavy, P. (2017). Research design: Quantitative, qualitative, mixed methods, arts-based, and community-based participatory research approaches. New York: Guilford Publications.; Lee, B. B., Lee, E. H., & Lee, T. (2022). The effect of E-Government website evaluation on user satisfaction and intention to use: the mediating role of warmth and competence judgment on government. Information, Communication & Society, 26(9), 1868-1889. Doi: https://doi.org/10.1080/1369118X.2022.2041701.; Lee, G. L., & Pai, J. (2005). Influence of environmental and organizational factors on the success of internet‐based interorganizational systems planning. Internet Research, 15(5), 527–543.; Lee, J. (2010). 10 year retrospect on stage models of e-Government: A qualitative meta-synthesis. Government Information Quarterly, 27(3), 220-230.; Lucas, H. (1978). Empirical evidence for a descriptive model of implementation. MIS Quaterly, 2(2), 27–42.; MacLean, D., & Titah, R. (2021). A Systematic Literature Review of Empirical Research on the Impacts of e-Government: A Public Value Perspective. Public Administration Review 82(1), 23-38.; Madsen, C. Ø., & Kræmmergaard, P. (2015). Channel Choice: A Literature Review. Electronic Government. Proceedings of the 14th IFIP WG 8.5 International Conference on Electronic Government (EGOV 2015). Thessaloniki, Grecia.; Maldonado, C. (2018). La incorporación de Tecnologías de Información y comunicación en organizaciones gubernamentales y la creación de valor. El caso de la Dirección Nacional de Migraciones (2007-2015). Buenos Aires: Universidad de San Andrés.; Malodia, S., Dhir, A., Mishra, M., & Bhatti, Z. (2021). Future of e-Government: An integrated conceptual framework. Technological Forecasting and Social Change, 173, 1-17.; Martínez-Salgado, C. (2012). El muestreo en investigación cualitativa. Principios básicos y algunas controversias. Ciênc. saúde coletiva, 17(3), 613-619. DOI: https://doi.org/10.1590/S1413-81232012000300006.; Mellouli, M., Bouaziz, F., & Bentahar, O. (2020). E-government success assessment from a public value perspective. International Review of Public Administration, 25(3), 153-174. Doi: https://doi.org/10.1080/12294659.2020.1799517.; Meneses, J., & Rodriguez, D. (2011). El cuestionario y la entrevista. Universidad Abierta de Cataluña.; Meynhardt, T. (2009). Public value inside: what is public value creation? International Journal of Public Administration, 32(3–4), 192–219.; Mihuandayani, Utami, E., & Luthfi, E. T. (2018). Text mining based on tax comments as big data analysis using SVM and feature selection. International Conference on Information and Communications Technology (ICOIACT) (págs. 537–542). IEEE.; Miles, M., Huberman, A., & Saldana, J. (2014). Qualitative Data Analysis: A Methods Sourcebook. Londrés: Sage.; Mingers, J. (2003). The paucity of multimethod research: a review of the information. Info Systems, 233–249.; Mingers, J. (2004). Real-izing Information Systems: Critical Realism as an Underpinning Philosophy for Information Systems. Information & Organization, 145-153.; Mingers, J., & Brocklesby, J. (1997). Multimethodology: Towards a framework for mixing methodologies. Omega, 25(5), 489–509.; Mingers, J., Mutch, A., & Willcocks, L. (2013). Critical realism in Information Systems Research. MIS Quarterly, 37(3), 795-802.; Moore, M. H. (1994). Public value as the focus of strategy. Australian Journal of Public Administration, 53(3), 296-304.; Moore, M. H. (1995). Creating Public Value. Strategic Management in Government. USA: Harvard University Press.; Moore, M. H. (2014). Public Value Accounting: Establishing the Philosophical Basis. Public Administration Review, 74(4), 465–477.; Morales, V., & Bayona, S. (2019). Critical success factors in the development of e-government: A systematic review of the literature %7C [Factores Críticos de Éxito en el Desarrollo de E-Gobierno: Revisión Sistemática de la Literatura]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao (E23), 233-247.; Morales, V., Bayona, S., & Morales, J. (2020). Categorization of critical success factors in the development of e-government %7C [Categorización de factores críticos de éxito en el desarrollo de e-gobierno]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 590-602.; Müller, S. D., & Skau, S. A. (2015). Success factors influencing implementation of e-government at different stages of maturity: a literature review. Int. J. Electronic Governance, 7 (2), 136-170.; Nam, T. (2014). Determining the type of e-government use. . Government Information Quarterly, 31(2), 211–220. Doi:http://dx.doi.org/10.1016/j.giq.2013.09.006.; Nguyen, T. D., Nguyen, J. M., & Cao, T. H. (2015). Information Systems Success: A Literature Review. En Lecture Notes in Computer Science (págs. 242–256). DOI:10.1007/978-3-319-26135-5_18.; Nookhao, S. K. (2023). Achieving a successful e-government: Determinants of behavioral intention from Thai citizens’ perspective. Heliyon, 9(8).; Nusir, M., & Bell, D. (2013). Systematic Literature Review: Taxonomy of Services in e-Government. UK Academy for Information Systems Conference Proceedings 2013.; OECD. (2001). Understanding the Digital Divide. Paris: OECD Publishing. Doi: https://doi.org/10.1787/236405667766.; Orlikowski, W. (1992). The duality of technology: rethinking the concept of technology in organizations. Organization Science 3(3), 398–427.; Ortiz-Rodríguez, F., Mishra Tiwari, S., Amara, F. Z., & Sahagun, M. (2023). E-Government Success: An End-User Perspective. En J. M. Medina-Quintero, & A. J. Sahagun M. A., Global Perspectives on the Strategic Role of Marketing Information Systems (págs. 168-186). IGI Global.; Owusu, A. (2023). Assessing the impact of e-government systems from citizens' perspective: evidence from Ghana. . Electronic Government, 19(3), 376-400. Doi: https://doi.org/10.1504/EG.2023.130583.; Owusu, A., Akpe-Doe, C., & Taana, I. (2022). Assessing the Effectiveness of E-Government Services in Ghana: A Case of the Registrar General's Department. . International Journal of Electronic Government Research, 18, 1-21.; Parada Corrales, J. (2004). Realismo crítico en investigación en ciencias sociales: una introducción. Investigación & Desarrollo, 12 (2), 396-429.; Parasuraman, A., Zeithaml, V. A., & Berry, L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. En J. Dawson, F. A., & L. Sparks, The Retailing Reader (págs. 30-51). New York: Routledge.; Paré, G. (2004). Investigating information systems with positivist case study. Communications of the Association for Information Systems, 13(1), 233-264.; Parra Jiménez, O. D., & Patino Jacinto, R. A. (2010). Evasión de impuestos nacionales en Colombia: años 2001 - 2009. Revista Facultad De Ciencias Económicas, 18(2), 177-198.; Peña, J. I., Díaz, B. H., & Favier, M. (2010). Multiméthodologie dans la recherche en systèmes d’information. Deux exemples de recherche en cours en Colombie. París.; Petter, S., DeLone, W., & McLean, E. (2012). The Past, Present, and Future of “IS Success.”. Journal of the Association for Information Systems, 13(5), 341–362.; Petter, S., Delone, W., & Mclean, E. (2013). Information systems success: the quest for the independet variables. Journal of Management Information Systems, 29(4), 7-61.; Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903.; Rahman, A. (2015). Toward a Comprehensive Conceptualization of Digital Divide and its Impact on E-Government System Success. En M. Quaddus, & A. G. Woodside, E-Services Adoption: Processes by Firms in Developing (págs. 291-488). Emerald Publishing Limited. Doi: http://dx.doi.org/10.1108/S1069-096420150000023003.; Rainer, R., & Watson, H. (1995). The keys to executive information system success. Journal of Management Information Systems, 12(2), 83–98.; Rana, N., Dwivedi, Y., Williams, M., & Weerakkody, V. (2015). Investigating success of an e-government initiative: Validation of an integrated IS success model. Information Systems Frontiers, 17(1), 127-142.; Reddick, G. (2004). Citizen interaction with e-government: From the streets to servers? Government Information Quarterly, (22), 38-57.; Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On Comparing Results from CB-SEM and PLS-SEM : Five Perspectives and Five Recommendations. Marketing: ZFP – Journal of Research and Management, 39(3), 4–16.; Ringle, C., Wende, S., & Becker, J. (Accedido: 18 de noviembre de 2024). SmartPLS 4. Disponible en: https://www.smartpls.com/documentation.; Robbins, G., Mulligan, E., & Keenan, F. (2015). e-Government in the Irish Revenue: The Revenue On-Line Service (ROS): A success story? Financial Accountability and Management, 31(4), 363-394.; Rogers, E. M. (1962). Diffusion of innovations. New York: Free Press.; Ruel, E., Wagner, W. E., & Gilllespie, B. J. (2016). The practice of survey research: Theory and applications. Thousand Oaks, California: SAGE.; Ruiz, M. A., Pardo, A., & San Martín, R. (2010). Modelos de ecuaciones estructurales. Papeles del Psicólogo, 31(1), 34-45.; Saunders, M. N. (2019). Capitulo 4: Understanding research philosophy and approaches ti theory development. En M. N. Saunders, P. Lewis, & A. Thornhill, Research methods for business students (págs. 128-171). Reino Unido: Pearson Education Limited.; Scott, M., DeLone, W., & Golden, W. (2016). Measuring eGovernment success: a public value approach. European Journal of Information Systems, 187-208. DOI: https://doi.org/10.1057/ejis.2015.11.; Seddon, P. B. (1997). respecification and extension of the DeLone and Mc Lean model of IS success. Information systems research, 8(3), 240-253.; Sedera, D. (2006). Enterprise system success: a measurement model. Queensland, Australia: Queensland University of Technology.; Shmueli, G., Sarstedt, M., Hair, J., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. (2019). Evaluación de modelos predictivos en PLS-SEM: pautas para usar PLSpredict. European Journal of Marketing, 53 (11), 2322-2347. DOI: https://doi.org/10.1108/EJM-02-2019-0189.; Siddaway, A., Wood, A. M., & Hedges, L. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses. . Annual Review of Psychology, 70, 747-770.; Singh, H., Grover, P., Kar, A., & Ilavarasan, V. (2020). Review of performance assessment frameworks of e-government projects. . Transforming Government: People, Process and Policy, 14(1), Doi: https://doi.org/10.1108/TG-02-2019-0011.; Soper, D. (11 de 21 de 2024). A-priori Sample Size Calculator for Structural Equation Models [Software]. . Obtenido de https://www.danielsoper.com/statcalc; Sorongan, E., & Hidayati, Q. (2020). Integration of eucs variables into delone and mclean models for E-government evaluation: Conceptual models. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 6(1), 32-42.; Stefanovic, D., Marjanovic, U., Delić, M., Culibrk, D., & Lalic, B. (2016). Assessing the success of e-government systems: An employee perspective. . Information & Management, 53(6), 717–726. doi:10.1016/j.im.2016.02.007 .; Sterrenberg, G., & L'Espoir Decosta, P. (2023). Identifying the crucial factors of e-government success from the perspective of Australian citizens living with disability using a public value approach. Government Information Quarterly, 40 (3), 101813.; Sugumaran, V., & Arogyaswamy, B. (2003). Measuring it performance: “Contingency”. Journal of Computer Information Systems, 44(2), 79-86.; Teo, T. S., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: An empirical study. Journal of Management Information Systems, 25(3), 99-131.; Teo, T., & Wong, P. (2005). Implementing electronic filing of tax returns: insights form. Journal of Information Technology Case and Application, 7(2), 3-16.; Thomas, P. (2006). Information systems success and technology acceptance within government organization. Association for Information Systems - 12th Americas Conference On Information Systems, (págs. 4404–4411).; Titah, R., & Barki, H. (2006). e-Government Adoption and Acceptance: A Literature Review. International Journal of Electronic Government Research (IJEGR), 2(3), 23–57.; Torres, M., Vásquez, C., & Viloria, A. (2010). GESTIÓN Y CALIDAD DE LA INFORMACIÓN EN EL GOBIERNO ELECTRÓNICO. Universidad, Ciencia y Tecnología.; Twizeyimana, J., & Andersson, A. (2019). The public value of E-Government – A literature review. Government Information Quarterly, 36, 167–178.; United Nations. (2018). UNITED NATIONS E-GOVERNMENT SURVEY 2018. New York: United Nations.; United Nations E-government survey 2024. (2024). Nueva York: United Nations.; Van Maanen, J., Sørensen, J., & Mitchell, T. (2007). The interplay between theory and method. Academy of Management Review, 32(4), 1145-1154.; Veeramootoo, N., Nunkoo, R., & Dwivedi, Y. K. (2018). What determines success of an e-government service? Validation of an integrative model of e-filing continuance usage. Government Information Quarterly, 35(2), 161–174. Doi: https://doi.org/10.1016/j.giq.2018.03.004.; Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. Doi: https://doi.org/10.1287/mnsc.46.2.186.11926.; Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.; Venkatesh, V., Sykes, T. A., & Venkatraman, S. (2014). Understanding e-Government portal use in rural India: role of demographic and personality characteristics. . Information Systems Journal, 24(3), 249–269. Doi:10.1111/isj.12008.; Verkijika, S., & De Wet, L. (2018). A usability assessment of e-government websites in Sub-Saharan Africa. International Journal of Information Management, 39, 20-29.; Vogt, W. P., Vogt, E. R., Gardner, D. C., & Haeffele, L. M. (2014). Selecting the right analyses. New York: Guilford.; Wakhu, S., He, J., & Xu, F. (2019). The 3D Integrated Model for E-Government Systems Success: A Case of the e-EIA System in Kenya. AFRICAN JOURNAL OF LIBRARY ARCHIVES AND INFORMATION SCIENCE, 29(1), 63-78.; Wang, Y. S., & Liao, Y. W. (2008). Assessing eGovernment systems success: A validation of the DeLone. Government Information Quarterly, 25(4), 717–733.; Westland, J. (2012). Erratum to ‘‘Lower bounds on sample size in structural equation modeling’’. Electronic Commerce Research and Applications (10), 445; https://doi.org/10.1016/j.elerap.2012.06.001.; Westland, J. C. (2010). Lower bounds on sample size in structural equation modeling. Electronic Commerce Research and Applications (9), 476-487.; Will, D. J. (1981). Roy Bhaskar, A realist theory of science, Brighton, Sussex, Harvester Press, 1978, (1st ed., 1975), 8vo, pp. 284, £3.95 (paperback). - Roy Bhaskar, The possibility of naturalism: A philosophical critique of the contemporary human sciences. Medical History, 25(1), 91-92.; Wynn, D., & Williams, C. (2012). PRINCIPLES FOR CONDUCTING CRITICAL REALIST CASE STUDY RESEARCH IN INFORMATION SYSTEMS. MIS Quarterly, 36(3), 787-810.; Yin, R. (2003). Case Study Research, Design and Methods. Newbury Park, CA: Sage Publications.; https://repositorio.unal.edu.co/handle/unal/88224; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
8
Authors:
Source: Revista General de Información y Documentación; Vol. 28 No. 1 (2018); 193-212 ; Revista General de Información y Documentación; Vol. 28 Núm. 1 (2018); 193-212 ; 1988-2858 ; 1132-1873
Subject Terms: Ancient cartography, georeferencing, Geographic Information Systems, QGIS, Software evaluation, Cartografía antigua, Georreferenciación, Sistemas de Información Geográfica, Evaluación de software
File Description: application/pdf
Relation: https://revistas.ucm.es/index.php/RGID/article/view/60810/4564456547603; Anton, L.; Guallar, J. (2014). Análisis de los archivos audiovisuales en internet de las televisiones autonómicas españolas. Revista Española de Documentación Científica, 37 (1): e033.; British Library (2017). Online Gallery. Georeference home. http://www.bl.uk/ georeferencer/[Consulta: 21/07/2017]; Calatrava, J.; Ruiz, M. (2005). Los planos de Granada 1500-1909: cartografía urbana e imagen de la ciudad (Vol. 26). Granada: Diputación Provincial de Granada.; Carto (2017). Carto. Unlock the potential of your location data. https://carto.com/; [Consulta: 21/07/2017].; Cascón-Katchadourian, J.; Ruiz-Rodríguez, A. Á. (2016). Descripción y valoración del software MapTiler: del mapa escaneado a la capa interactiva publicada en la Web. El profesional de la información, 25(6), 970-978.; Codina, L. (2000). Evaluación de recursos digitales en línea: conceptos, indicadores y métodos. Revista española de documentación científica, 23 (1), 9-44.; Codina, L. (2006). Metodología de análisis y evaluación de recursos digitales en línea. Barcelona: UPF, Área de Biblioteconomía y Documentación, Departamento de Periodismo y Comunicación Audiovisual. www.lluiscodina.com/wp-content/uploads/ metodov6.doc [Consulta: 21/07/2017]; Cortés, J. (2001). El documento cartográfico, en Jiménez Pelayo, J. y Monteagudo López-Menchero, J. (Eds.) La documentación cartográfica: Tratamiento, gestión y uso. Huelva: Universidad de Huelva, 39-113.; Crespo, A.; Fernández, A. (2011). ¿Cartografía antigua o Cartografía histórica? Estudios Geográficos, 72(271), 371-388.; Dávila, F. J; Camacho, E. (2012). Georreferenciación de documentos cartográficos para la gestión de archivos y cartotecas: "propuesta metodológica". Revista Catalana de Geografía, 17(46); Espiago, J. (2001). Documentación cartográfica digital, en Jiménez Pelayo, J. y Monteagudo López-Menchero, J. (Eds.) La documentación cartográfica: Tratamiento, gestión y uso. Huelva: Universidad de Huelva, pp. 183-220.; ESRI (2013a). Principios básicos de georreferenciación de un dataset ráster. http://resources.arcgis.com/es/help/main/10.1/index.html#/na/009t000000mn000000/; ESRI (2013b). ¿Qué son los datos ráster? http://resources.arcgis.com/es/help/main/10.1/ index.html#/na/009t00000002000000/ [Consulta: 21/07/2017].; Fimiani, M. (1985). "Cartografie", en Donatella Mazzoleni (a cura di). La città e l'immaginario. Roma: Officina Edizioni, p. 227.; GNU (2016) ¿Qué es el software libre? www.gnu.org/philosophy/free-sw.es.html [Consulta: 21/07/2017].; Guallar, J.; Abadal, E.; Codina, L. (2012). Sistema de análisis de hemerotecas de prensa digital. Trípodos, 31, 37-64.; GvSIG. (2015). Manual de Usuario. En QGIS (Ed.), http://downloads.gvsig.org/download/ gvsig-desktop/dists/2.2.0/docs/gvsig-2.2.0-doc-1.0.0-es.pdf [Consulta: 21/07/2017].; Hill, Linda L. (2009). Georeferencing: The geographic associations of information. Mit Press.; International Cartographic Association. (1973). Multilingual Dictionary of Technical Terms in Cartography. Dictionnaire Multilingue de Termes Techniques Cartographiqes: Diccionario Multilingüe de Términos Técnicos Cartográficos; F. Steiner. Wiesbaden: International Cartographic Association; Instituto Geográfico Nacional (2017a). Fondos Cartográficos del Instituto Geográfico Nacional. España. Siglos XVI-XIX. www.ign.es/fondoscartograficos/ [Consulta: 21/07/2017]; Instituto Geográfico Nacional (2017b). Comparador de Mapas. http://www.ign.es/web/ mapasantiguos/#map=5/-1669792.36/4163881.14/0 [Consulta: 21/07/2017]; Institut Cartogràfic i Geològic de Catalunya (2017). Cartoteca Digital. Georeferenciacio. http://cartotecadigital.icgc.cat/cdm/Georeferenciacio/lang/es [Consulta: 21/07/2017]; Institut National de l´Information Géographique et Forestiére (2017). Remonter le temps. https://remonterletemps.ign.fr/ [Consulta: 21/07/2017]; Jiménez-Pelayo, J.; Bonachera-Cano, F.-J. (2001). Recursos de información cartográfica en internet”, en: Jiménez-Pelayo, J.; Monteagudo-López-Menchero, J. (Eds). La documentación cartográfica: Tratamiento, gestión y uso. Huelva: Universidad de Huelva, pp. 221-262.; Leaflet (2017). Leaflet. http://leafletjs.com/[Consulta: 21/07/2017]; Long, T.i; Jiao, W.; He, G.; Zhang, Z. (2016). A Fast and Reliable Matching Method for Automated Georeferencing of Remotely-Sensed Imagery. Remote Sensing, 8(1), 56. www.mdpi.com/2072-4292/8/1/56/htm. [Consulta: 21/07/2017].; MappingGIS (2017). Cómo publicar mapas online con QGIS Cloud. http://mappinggis.com/2012/11/como-publicar-mapas-con-QGIS/ [Consulta: 21/07/2017]; National Library of Scotland (2017). NLS Map Georeferencer home page - online map georeferencing pilot programme. http://maps.nls.uk/projects/georeferencer/ [Consulta: 21/07/2017]; New York Public Library (2017). NYPL Map Warper. http://maps.nypl.org/warper/ [Consulta: 21/07/2017]; OpenLayers (2017). OpenLayers. A high-perfomance, feature-packed library for all your mapping needs. https://openlayers.org/ [Consulta: 21/07/2017]; QGIS (2016a). Guía de usuario de QGIS. http://docs.QGIS.org/2.8/es/docs/user_manual/; [consulta: 21 de Julio 2017]; QGIS (2016b). OpenLayers Plugin. https://plugins.QGIS.org/plugins/openlayers_plugin/ [Consulta: 21/07/2017]; QGIS (2017). Complemento georreferenciador. http://docs.qgis.org/2.2/es/docs/user _manual/plugins/plugins_georeferencer.html [Consulta: 21/07/2017]; QGIS (2017b). QGIS como Servidor de Datos OCG. http://docs.qgis.org/2.2/es/docs/ user_manual/ working_with_ogc/ogc_server_ support.html [Consulta: 21/07/2017]; QGIS Cloud (2017). QGIS Cloud Hosting. https://QGIScloud.com/ [Consulta: 21/07/2017]; OSGeo (2014). Panorama SIG Libre 2014/Clientes http://wiki.osgeo.org/ wiki/Panorama_SIG_Libre_2014/Clientes#cite_note-2 [Consulta: 21/07/2017]; OSGeo (2016). Estándares del Open GeoSPatial Consortium http://live.osgeo.org/es/standards/standards.html [Consulta: 21/07/2017]; Quesada-Román, A. (2015). La Mapoteca Virtual de la Universidad Nacional de Costa Rica. Perspectivas, (11), 13. www.revistas.una.ac.cr/index.php/perspectivas/article/ view/ 7530 [Consulta: 21/07/2017].; Ramos, N.; Roset, R. (2012). Georreferenciación de Mapas antiguos con la ayuda de usuarios. Revista Catalana de Geografía, (XVII), 46. www.rcg.cat/articles.php?id=257 [Consulta: 21/07/2017]; Universidad Nacional de Costa Rica (2017). “Universidad Nacional de Costa Rica. Mapoteca Virtual”. http://www.repositorio.una.ac.cr/handle/11056/7075 [Consulta: 21/07/2017]; Witmer, A.; Hagan, J.; Scaffidi, B.; Hancock, J. (2006). Automated georeferencing of digitized map images. https://www.google.com/patents/US20060041375 [Consulta: 21/07/2017]; https://revistas.ucm.es/index.php/RGID/article/view/60810
-
9
Authors: et al.
Source: TECNOCIENCIA Chihuahua; Vol. 17 Núm. 3 (2023): Tecnociencia Chihuahua Vol. 17 Núm. 3 (2023) ; e1286 ; 2683-3360 ; 1870-6606 ; 10.54167/tch.v17i3
Subject Terms: Lean, Toyota Production System, automotive industry, continual improvement program, manufacture multinational companies, Sistema de Producción Toyota, industria automotriz, programa de mejora continua, Compañías multinacionales de manufactura
File Description: application/pdf; text/html
Relation: https://vocero.uach.mx/index.php/tecnociencia/article/view/1286/2180; https://vocero.uach.mx/index.php/tecnociencia/article/view/1286/2181; https://vocero.uach.mx/index.php/tecnociencia/article/view/1286
-
10
Authors:
Contributors:
Subject Terms: Sensores aerotransportados, Sistemas de Información Geográfica (SIG), Fotografías aéreas digitales, LIDAR, Vegetación permanente, Administración de litorales, ASFA_2015::B::Botany, ASFA_2015::C::Computer programmes
Subject Geographic: Colombia.
File Description: pp. 107-125
-
11
Authors: Castillo Barrera, Silvia
Source: Revista General de Información y Documentación; Vol. 27 No. 1 (2017); 219-246 ; Revista General de Información y Documentación; Vol. 27 Núm. 1 (2017); 219-246 ; 1988-2858 ; 1132-1873
Subject Terms: Information behavior, information search, Information resources, Information sources, SNI researchers, Comportamiento informativo, Búsqueda de información, Recursos de información, Fuentes de información, Investigadores del SNI
File Description: application/pdf
Relation: https://revistas.ucm.es/index.php/RGID/article/view/56568/51123; Bouazza, A. (1989). Information user studies. Encyclopedia of Library and Information Science, 44, 144-166.; Budd, J. (1989). Research in two cultures. Collection Management, 11 (3-4), 1–23.; Calva González, J. J. (2004). Las necesidades de información: fundamentos teóricos y métodos. México: UNAM/CUIB.; CONACyT. (2013). Sistema Nacional de Investigadores. Obtenido de: http://www.conacyt.gob.mx/sni/Paginas/default.aspx [Consulta: 28/10/2013].; CONACyT.(2014). Sistema Nacional de Investigadores. Investigadores vigentes a enero de 2014. Obtenido de: http://www.conacyt.gob.mx/SNI/_layouts/xlviewer.aspx?id=/SNI/Documents/VIGENTES_SNI2014.xlsx [Consulta: 23/02/2014].; Corkill, C., M. Mann. (1978). Information needs in the humanities: two postal surveys. Sheffield: University of Sheffield, Centre for Research on User Studies.; DGAPA (Dirección General de Asuntos del Personal Académico). (2013). Personal académico en los subsistemas de acuerdo con la figura. Obtenido de: http://dgapa.unam.mx/html/estadisticas/Estadistica-Qna2213.pdf [Consulta: 23/11/2013].; DGAPA (Dirección General de Asuntos del Personal Académico). (2014). Estatuto del personal académico de la UNAM (EPA). Obtenido de: http://dgapa.unam.mx/html/normatividad/epa.html [Consulta: 05/05/2014].; Diario Oficial de la Federación. (2013). Reglamento del Sistema Nacional de Investigadores, Primera sección. Obtenido de: http://diariooficial.segob.gob.mx/nota_detalle.php?codigo=4932567&fecha=26/09/2006 [Consulta: 28/10/2013].; Fulton, C. (1991). Humanists as information users: a review of the literature. Australian Academic & Research Libraries, 2 (3), 188-197.; Heinzkill, R. (1980). Characteristics of references in selected scholarly English Literary journals. Library Quarterly, 50 (3), 352-365.; Hutchins, W. J., Pargeter, L. J., y Saunders. (1971). The language barrier: a study in depth of the place of foreign language materials in the research activity of an academic community. Sheffield: University of Sheffield.; Mackesy, E. M. (1982). A perspective on secondary access services in the humanities. Journal of the American Society for Information Science, 33 (2), 146-151.; Méndez, A. (1984). An analysis of humanists requests received by an Information Service for the Humanities. Journal of Information Science, 9, 97-105.; Münster, I. (2003). Un estudio de las necesidades de información, hábitos y características de investigadores en Humanidades y Ciencias Sociales. Información, cultura y sociedad. Obtenido de:http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S185117402003000100004lng=es&nr=iso [Consulta: 16/10/2013].; Raben, J., y Burton, S. K. (1981). Information systems and services in the arts and humanities. Annual Review of Information Science and Technology, 16, 247-266.; Rojas Soriano, R. (2005). Guía para realizar investigaciones sociales. México: Plaza y Valdés.; Sanz Casado, E. (1994). Manual de estudios de usuarios. Madrid: Fundación Germán Sánchez Ruipérez.; Sievert, D. y Sievert, M. E. (1989). Philosophical research: report from the field. En Humanists at work: disciplinary perspectives and personal reflections. (pp. 79-94). Chicago: University Illinois at Chicago.; Stieg, M. F. (1981). The information of needs of historians. College and research libraries, 42 (6), 549-560.; Stone, S. (1980). CRUS humanities research programme. En S. Stone (ed.), Humanities information research proceedings of a seminar. (pp. 15-26). Sheffield, UK: University of Sheffield.; UNAM (Universidad Nacional Autónoma de México). (2013). Agenda estadística UNAM 2013. Obtenido de: http://www.planeacion.unam.mx/Agenda/2013/disco/# [Consulta: 24/10/2013].; UNAM (Universidad Nacional Autónoma de México). (2013). Portal de estadística universitaria. Obtenido de: http://www.estadistica.unam.mx/numeralia/ [Consulta: 24/10/2013].; Wiberley, S. E. y Jones, W. G. (1989). Patterns of information seeking in the Humanities. College and Research Libraries, 50 (6), 638-645.; https://revistas.ucm.es/index.php/RGID/article/view/56568
-
12
Authors: et al.
Source: Visión electrónica; Vol. 14 No. 2 (2020); 159-170 ; Visión electrónica; Vol. 14 Núm. 2 (2020); 159-170 ; 2248-4728 ; 1909-9746
Subject Terms: Sistemas de Información Clínicos, Comunidad Servicio de Telemonitorización, Sistemas Integrados Embebidos, Pacientes, Patrones, Ambiente Rural, Señales Biomédicas, Redes de Telecomunicaciones, Clinical Information Systems, Community Service Telemonitoring, Integrated Embedded Systems, Patient, Patterns, Rural Environment, Signs Biomedical, Telecommunications networks
File Description: application/pdf
Relation: https://revistas.udistrital.edu.co/index.php/visele/article/view/16284/17516; H. Qu, J. Cheng, L. Y. Wang and Q. Cheng. "Wifi-based telemedicine system: Signal accuracy and security", International Conference on Computational Science and Engineering, pp. 1081 -1085, 2009. https://doi.org/10.1109/CSE.2009.60 [2] J. M. Ansermino, "Universal Access to Essential Vital Signs Monitoring”, Anesthesia & Analgesia, vol. 117, no. 4, pp. 883-890, 2013 https://doi.org/10.1213/ANE.0b013e3182a1f22f [3] S. Haddab and M. Laghrouche, "Microcontroller-based system for electrogastrography monitoring through wireless transmission", Measurement Science Review, vol. 9, no. 5, pp. 122-126, 2009. https://doi.org/10.2478/v10048-009-0022-6 [4] Universidad Nacional de Colombia, “SARURO TELE CA- RE BOX (TCB-081) Dispositivo de Telemonitorización de Signos Vitales”, Manual de Instalación, Operación y Mantenimiento, Centro de Telemedicina Grupo de Investigación BioIngenium, 2008. [5] Organización Mundial de la Salud, "Informe sobre la situación mundial de las enfermedades no transmisibles", 2014. [Online]. Available at: https://apps.who.int/iris/bitstream/handle/10665/149296/WHO_NMH_NVI_15.1_spa.pdf;jsessionid=5DD10817E57A3957A087E63880B388E7?sequence=1 [6] G. Pico-Aponte and F. W. Salazar, “Sistema avanzado de asistencia al conductor empleando visión artificial en vehículos de transporte público”, thesis, Universidad Técnica de Ambato, Ecuador, 2019. [7] R. J. Martis, U. R. Acharya and H. Adeli, "Current methods in electrocardiogram characterization", Computers in Biology and Medicine, vol. 48, pp. 133-149, 2014. https://doi.org/10.1016/j.compbiomed.2014.02.012 [8] D. Grzechca, D. Komorowski and S. Pietraszek, "Chapter A Universal Wireless Device for Biomedical Signals Recording", Book: Pervasive and Mobile Sensing and Computing for Healthcare: Technological and Social Issues: Mukhopadhyay, Subhas Chandra, Postolache, Octavian A. Smart Sensors, Measurement and Instrumentation, 2013. Berlin, Heidelberg Springer. https://doi.org/10.1007/978-3-642-32538-0_7 [9] C. Camargo, “Sie: Plataforma de hardware copyleft para la Enseñanza de Sistemas Digitales”, XVII Taller de IBERCHIP, Bogotá Colombia, 2011. [10] C. Camargo, “Metodología Para La transferencia Tecnológica en la Industria Electrónica Basada en software libre y copyleft hardware”, XVII Taller de IBERCHIP, Bogotá Colombia, 2011. [11] E. Romero. "El centro de telemedicina e innovación tecnológica en salud", Universidad Nacional de Colombia, Cátedra Sesquicentenario Bogotá-Colombia, 2017. [Online]. Available at: http://www.catedras-bogota.unal.edu.co/resources/catedra_sesquicentenario/2017-I/docs/S9_Romero.pdf [12] Medlab, “Three-Channel EKG Board”. [Online]. Available at: http://www.medlab.eu/english/modules/ekgmodules/eg01010/index.html [13] M. Waqasa and A. Torre, “Political favoritism and social conflict: a case study of the Benazir Income Support Programme (BISP) in Pakistan”, Area Development and Policy, pp. 1-16. 2019 https://doi.org/10.1080/23792949.2019.1623055 [14] Medlab, “Tarjeta NIBP 2000”. [Online]. Available at: http://www.medlab.eu/ [15] D. Marinos, F. Leonidas, N. Vlissidis, C. Giovanis, G. Pagiatakis, C. Aidinis and J. Klaue, “Medical and safety monitoring system over an in-cabin optical wireless network”, International journal of electronics, vol. 98, no.2, pp. 223-233, 2011. https://doi.org/10.1080/00207217.2010.506846 [16] C. I. Camargo-Bareño, J. A. Cortes-Romero and A. Jimenez.Triana, “Hardware copyleft Como Herramienta Para La enseñanza de Sistemas Embebidos”, Tecnura, vol. 16, no. 34, 2012. https://doi.org/10.14483/udistrital.jour.tecnura.2012.4.a13 [17] C. Camargo, "Ecbot y ECB AT91 de plataformas abiertas para el diseño de Sistemas Embebidos y co diseño HW / SW", VIII Jornadas de Computación Reconfigurable y Aplicaciones, Madrid, España, 2008. [18] R. Viseur, “From open source software to open source hardware”, IFIP International Conference on Open Source Systems, pp. 286-291, 2012. https://doi.org/10.1007/978-3-642-33442-9_23 [19] J. L. Mastronardi, R. E. Bianchi Lastra, M. C. Beroqui and J. L. Agüero, “Operación inestable de Central Hidroeléctrica Futaleufú por transitorios hidráulicos”, I Jornadas de Investigación y Transferencia, Argentina, 2011. [20] M. Opdenacker, “Embedded Linux size reduction techniques”, 2017. [Online]. Available at: https://elinux.org/images/0/07/Opdenacker-embedded-linux-size-reduction-techniques.pdf; https://revistas.udistrital.edu.co/index.php/visele/article/view/16284
-
13
Authors: et al.
Contributors: et al.
Source: Communication Studies; n. 32 (2021) ; Estudios de comunicacion; n. 32 (2021) ; Études de communication; n. 32 (2021) ; Estudos em Comunicação; n. 32 (2021) ; 1646-4974
Subject Terms: television, information, Covid-19, Observatory, content analysis, Spain, Jornalismo, televisión, información, Observatorio, análisis de contenido, España, Tratamiento informativo del Covid-19 en la televisión española
File Description: application/pdf
Relation: http://doc.ubi.pt/ojs/index.php/ec/article/view/853/pdf; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/223; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/224; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/225; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/226; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/227; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/228; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/229; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/230; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/231; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/232; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/233; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/234; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/235; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/236; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/237; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/238; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/239; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/240; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/241; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/242; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/243; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/244; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/245; http://doc.ubi.pt/ojs/index.php/ec/article/downloadSuppFile/853/246; Aparicio, D., Salgado, C., & Díaz-Arias, R. (2016). Los agentes informativos en los telediarios españoles. Resultados de Quién Habla y De Quién se Habla del otoño de 2013 al otoño de 2015 (13S2-15S). Universidad Complutense Madrid. https://eprints.ucm.es/38291/.; Bardin, L. (1986). El análisis de contenido. Akal.; Barlovento Comunicación (2020). Análisis mensual del comportamiento de la audiencia TV. Marzo 2020. www.barloventocomunicacion.es/wp-content/uploads/2020/04/barlovento-analisisaudiencias-tvmarzo2020.pdf.; Beder, S. (2004). Moulding and Manipulating the News. In R. White, Controversies in Environmental Sociology (pp. 204-220). Cambridge University Press.; Berelson, B. (1952). Content Analysis in Comunication Research. Free Press. Casero-Ripollés, A. (2020). Impact of Covid-19 on the media system. Communicative and democratic consequences of news consumption during the outbreak. El profesional de la información, 29(2), e290223. https://doi.org/10.3145/epi.2020.mar.23.; CIS (2017). Estudio nº 3195. Barómetro de noviembre de 2017. Centro de Investigaciones Sociológicas. www.cis.es/cis/export/sites/default/-Archivos/Marginales/3180_3199/3195/es3195mar.pdf.; CIS (2019). Macrobarómetro de octubre 2019. Centro de Investigaciones Sociológicas. www.cis.es/cis/opencms/ES/9_Prensa/Noticias/2019/prensa0440.html.; CIS (2020). Estudio nº 3277. Barómetro de marzo de 2020. Centro de Investigaciones Sociológicas. http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3260_3279/3277/es3277mar.pdf.; Costa-Sánchez, C., & López-García, X. (2020). Comunicación y crisis del coronavirus en España. Primeras lecciones. El profesional de la información, 29(3), e290304. https://doi.org/10.3145/epi.2020.may.04.; Dader, J. L. (2007). Del periodista pasible, la obviedad informativa y otras confusiones en el Estanco de noticias. Estudio sobre el mensaje periodístico, (13), 31-53. https://revistas.ucm.es/index.php/ESMP/article/view/ESMP0707110031A.; Díaz-Arias, R. (2000). La libertad de programación en radiodifusión. Un desarrollo del art. 20 de la Constitución Española [Tesis Doctoral inédita]. Universidad Complutense de Madrid.; Díaz-Arias, R. (2006). La primera edición del telediario de TVE, un clásico de éxito. In A. Vega, Muestra del panorama actual sobre los contenidos en la radio y la televisión españolas. UCM.; Díaz-Arias, R., González-Conde, J., & Aparicio, D. (2015). Parámetros de calidad de la información en televisión. La metodología del Observatorio de Calidad de la Información en Televisión. Ámbitos. Revista Internacional de Comunicación, (30). https://eprints.ucm.es/34758/.; Fernández del Moral, J. (Ed.) (2007). El análisis de la información televisiva: hacia una medida de la calidad periodística. Dosat.; Galtung, J., & Ruge, M. (1965). The Structure of Foreign News. Journal of peace research, 2(1), 64-91. https://doi.org/10.1177/002234336500200104.; Holsti, O. (1969). Content analysis for the social sciences and humanities. Addison Wesley.; K.U. Leuven-ICRI, Central European University-CMCS, Jönköping International Business School-MMTC, & Ernst & Young Consultancy Belgium (2009). Independent Study on Indicators for Media Pluralism in the Member States – Towards a Risk-Based Approach. Katholieke Universiteit Leuven. http://ec.europa.eu/information_society/media_taskforce/doc/pluralism/pfr_report.pdf.; Igartua, J., & Humanes, M. (2004, abril 29). El método científico aplicado a la investigación en comunicación social. Aula abierta. Lecciones básicas 2 – Portal de la Comunicación. Portal Comunicación. www.portalcomunicacion.com/download/6.pdf.; Martín, E. (1963). El análisis de contenido. Revista de estudios políticos, (132), 45-64. https://dialnet.unirioja.es/servlet/articulo?codigo=2047530.; Masip, P., Aran-Ramspott, S., Ruiz-Caballero, C., Suau, J., Almenar, E., & Puertas-Graell, D. (2020). Consumo informativo y cobertura mediática durante el confinamiento por el Covid-19: sobreinformación, sesgo ideológico y sensacionalismo. El profesional de la información, 29(3). https://doi.org/10.3145/epi.2020.may.12.; Moreno, Á., Fuentes-Lara, C., & Navarro, C. (2020). Covid-19 communication management in Spain: Exploring the effect of information-seeking behavior and message reception in public’s evaluation. El profesional de la información, 29(4). https://doi.org/10.3145/epi.2020.jul.02.; Newman, N., Fletcher, R., Kalogeropoulos, A., & Kleis Nielsen, R. (2019). Reuters Institute digital news report 2019. Reuters Institute for the Study of Journalism. www.digitalnewsreport.org.; Sparks, C., & Tulloch, J. (Eds.) (2000). Tabloid tales: global debates over media standards. Rowman and Littlefield.; Zeller, C. (2001). Los medios y la formación de la voz en una sociedad democrática. Anàlisi: quaderns de comunicació i cultura, (26), 121-144. https://dialnet.unirioja.es/servlet/articulo?codigo=72414&orden=14574&info=link.; http://doc.ubi.pt/ojs/index.php/ec/article/view/853
Availability: http://doc.ubi.pt/ojs/index.php/ec/article/view/853
-
14
Authors: et al.
Subject Terms: Promoción de Salud, Salutogénesis, Género, Grupos de mujeres, Evaluación de Programa, Health promotion, Salutogenesis, Gender, Women’s groups, Programme evaluationa
Relation: http://hdl.handle.net/10272/16749
-
15
Authors:
Subject Terms: Information/library development, Information technology, Information processing, Information systems, Information needs, Computerized Documentation System/Integrated Set of Information Systems, UNESCO -- Programme and budget, UNESCO -- Clearing House, Intergovernmental Council for the General Information Programme, 8th session, Paris
Time: 1992-1993, 1990
File Description: 4 p.; Electronic; Microfiche; online resource; volume
Relation: https://unesdoc.unesco.org/in/rest/api/getNoticeAttachment?noticeId=0000089380_spa; https://unesdoc.unesco.org/ark:/48223/pf0000089380_spa; 26 C/101
Availability: https://unesdoc.unesco.org/ark:/48223/pf0000089380_spa
-
16
Subject Terms: Information/library development, Information systems, Information/library finance, Information/library budgets, Information/library cooperation, Intergovernmental Programme for Cooperation in the Field of Scientific and Technological Information, UNESCO -- Clearing House, UNESCO -- Programme and budget, UNESCO -- Medium-term plan
Time: 1996-1997, 1996-2001
File Description: (50 p. in various pagings); Electronic; Microfiche; online resource; volume
Relation: https://unesdoc.unesco.org/ark:/48223/pf0000100302_spa; PGI.94/COUNCIL.X/4; CII.94/CONF.208/LD.12
Availability: https://unesdoc.unesco.org/ark:/48223/pf0000100302_spa
-
17
Authors: et al.
Contributors: et al.
Subject Terms: Àrees temàtiques de la UPC::Informàtica::Sistemes d'informació::Emmagatzematge i recuperació de la informació, Parallel programming (Computer science), NUMA, Scheduling, Shared memory, Task-based programming model Data transfer, Graph theory, Intelligent control, Memory architecture, Virtual storage, Graph Partitioning, Non uniform memory access, Parallel application, Performance improvements, Shared memory system, Task-based programming, Data reduction, Programació en paral·lel (Informàtica)
File Description: 11 p.; application/pdf
Relation: https://dl.acm.org/citation.cfm?id=3205310; info:eu-repo/grantAgreement/MINECO//TIN2015-65316-P/ES/COMPUTACION DE ALTAS PRESTACIONES VII/; info:eu-repo/grantAgreement/AGAUR/PRI2010-2013/2014 SGR 1051; info:eu-repo/grantAgreement/AGAUR/PRI2010-2013/2014 SGR 1272; info:eu-repo/grantAgreement/EC/H2020/779877/EU/Mont-Blanc 2020, European scalable, modular and power efficient HPC processor/Mont-Blanc 2020; info:eu-repo/grantAgreement/EC/H2020/671697/EU/Mont-Blanc 3, European scalable and power efficient HPC platform based on low-power embedded technology/Mont-Blanc 3; http://hdl.handle.net/2117/125137
-
18
Authors: et al.
Contributors: et al.
Subject Terms: Àrees temàtiques de la UPC::Informàtica::Sistemes d'informació, COVID-19 (Disease), Mobility, Contagious diseases, Geolocation technology, Satellite interference, Data sets, COVID-19, Human mobility, Spain, COVID-19 Flow-Maps, COVID-19 (Malaltia), Pandèmia de COVID-19, 2020-
File Description: 16 p.; application/pdf
Relation: https://www.nature.com/articles/s41597-021-01093-5; info:eu-repo/grantAgreement/EC/H2020/825070/EU/Interactive Extreme-Scale Analytics and Forecasting/INFORE; https://springernature.figshare.com/articles/dataset/Metadata_record_for_COVID-19_Flow-Maps_an_open_geographic_information_system_on_COVID-19_and_human_mobility_for_Spain/15198123; http://hdl.handle.net/2117/357339
-
19
Authors:
Source: Cuadernos Geográficos; Vol. 36 Núm. 1 (2005): La población española: nuevo siglo, nuevos datos, nuevos perfiles; 465-477 ; 2340-0129 ; 0210-5462
Subject Terms: Accesibilidad, Sistema de Información Geográfica, red viaria, Catalunya, Accessibility, Geographical Information System, road network, Catalonia, Accessibilité, Système d’Information Géographique, réseau de routes, Catalogne
File Description: application/pdf
-
20
Contributors: Universidad Nacional de Colombia. Sede Bogotá. Facultad de Ciencias. Departamento de Estadística
Subject Terms: 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores, Regression analysis - mathematical models, Correlation (statistics), Multivariate analysis, Time-series analysis, ANALISIS DE REGRESION-MODELOS MATEMATICOS, CORRELACION (ESTADISTICA), ANALISIS MULTIVARIANTE, ANALISIS DE SERIES DE TIEMPO, Estadística y Modelos Matemáticos, Ciencia de Datos y Análisis de Información, Epidemiología y Salud Pública, Economía y Finanzas, Educación y Sociedad, Agricultura y Medio Ambiente, Geografía y Geoinformación, Statistics and Mathematical Models, Data Science and Information Analysis, Epidemiology and Public Health, Economy and Finance, Education and Society, Agriculture and Environment, Geography and Geoinformation, Bayesian statistics, data analysis, data mining, STEM education, precision agriculture, geographic information system
Subject Geographic: 21 al 24 de septiembre de 2021
File Description: 383 páginas; application/pdf
Relation: Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using gibbs sampling. Journal of educational statistics, 17(3):251–269; Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association, 88(422):669–679.; Carroll, R. and Pachón, M. (2016). The unrealized potential of presidential coalitions in Colombia. Legislative Institutions and Lawmaking in Latin America, pages 122–147.; Clinton, J., Jackman, S., and Rivers, D. (2004). The statistical analysis of roll call data. American Political Science Review, pages 355–370; Colprensa (2013). El PIN cambió el nombre de su partido a Opción Ciudadana. El país.; Fowler, J. H. (2006). Legislative cosponsorship networks in the us house and senate. Social Networks, 28(4):454–465; Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian data analysis. CRC press; Gerrish, S. and Blei, D. (2012). How they vote. Issue-adjusted models of legislative behavior. Advances in neural information processing systems, 25:2753–2761.; Hare, C., Armstrong, D. A., Bakker, R., Carroll, R., and Poole, K. T. (2015). Using bayesian Aldrich-Mckelvey scaling to study citizens’ ideological preferences and perceptions. American Journal of Political Science, 59(3):759–774.; Jackman, S. (2001). Multidimensional analysis of roll call data via bayesian simulation: Identification, estimation, inference, and model checking. Political Analysis, 9(3):227–241.; Jackman, S. (2004). Bayesian analysis for political research. Annu. Rev. Polit. Sci., 7:483–505.; Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American statistical Association, 91(435):1343–1370.; Krehbiel, K. (1988). Spatial models of legislative choice. Legislative Studies Quarterly, pages 259–319.; Krehbiel, K. (1998). Pivotal politics: A theory of US lawmaking. University of Chicago Press.; Lofland, C. L., Rodríguez, A., Moser, S., et al. (2017). Assessing differences in legislators’ revealed preferences: A case study on the 107th US senate. The Annals of Applied Statistics, 11(1):456–479.; Patz, R. J. and Junker, B. W. (1999). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of educational and behavioral Statistics, 24(2):146–178.; Polson, N. G., Scott, J. G., and Windle, J. (2013). Bayesian inference for logistic models using pólya–gamma latent variables. Journal of the American statistical Association, 108(504):1339–1349.; Poole, K. T. (2000). Nonparametric unfolding of binary choice data. Political Analysis, 8(3):211–237.; Rivers, D. (2003). Identification of multidimensional item-response models. Typescript. Department of Political Science, Stanford University.; Rodriguez, A. (2012). Modeling the dynamics of social networks using bayesian hierarchical blockmodels. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(3):218–234.; Rosas, G., Shomer, Y., and Haptonstahl, S. R. (2015). No news is news: Nonignorable nonresponse in roll-call data analysis. American Journal of Political Science, 59(2):511–528.; Sewell, D. K. and Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512):1646–1657.; Sherina, V., McCall, M. N., and Love, T. M. (2019). Fully Bayesian imputation model for non-random missing data in qPCR. arXiv preprint arXiv:1910.13936.; Yu, X. and Rodriguez, A. (2019a). Spatial voting models in circular spaces: A case study of the U.S. house of representatives. Available at SSRN 3381925.; Yu, X. and Rodriguez, A. (2019b). Spherical latent factor model. Available at SSRN 3381925.; Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis with gprior distributions. Bayesian inference and decision techniques.; J. Barrera and E. Peñuela. New formulation for the step response to the overdamped dynamic second order systems. Unpublished.; R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole Cencage Learning, 9 edition, 2011.; C. T. Chen. Analog & digital Control System Design: Transfer Function, State-Space & Algebraic Methods. Saunders College, 1996.; W. Mendenhall and T. Sincich. A Second Course in Statistics: Regresion Analysis. Prentice Hall, 1996.; K. Ogata. Modern Control Engineering. Prentice Hall, 5 edition, 2010.; C. A. Smith and A. B. Corripio. Principles and Practice of Automatic Process Control. Wiley, 1997.; W. Sun and Ya-Xiang. Yuan. Optimization Theory and Methods, Nonlinear Programming. Springer, 2006.; Bahl, R., J. Martinez-Vazquez, and J. Youngman (2010). “Whither the property tax: New perspectives on a fiscal mainstay”. In: Challenging the Conventional Wisdom of the Property Tax, pp. 3–14.; Bax, D., T. Zewotir, and D. North (Dec. 2019). “A gamma generalised linear model as an alternative to log linear real estate price functions”. In: Journal of Economic and Financial Sciences 12. DOI:10.4102/jef.v12i1.476.; Clarke, Kevin A (2007). “A simple distribution-free test for nonnested model selection”. In: Political Analysis, pp. 347–363.; Cole, T. J. and P. J. Green (1992). “Smoothing reference centile curves: the LMS method and penalized likelihood”. In: Statistics in medicine 11.10, pp. 1305–1319.; CONPES Document (Dec. 2019). Table 1. Documento CONPES: REAJUSTE DE AVALÚOS CATASTRALES PARA LA VIGENCIA 2020. CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL. REPÚBLICA DE COLOMBIA. Departamento Nacional de Planeación. URL: https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3% B3micos/3980.pdf.; DANE (2019). The Building Census. URL: https://www.dane.gov.co/index.php/en/ statistics- by- topic- 1/construction/censo- de- edificaciones (visited on 03/10/2020).; De Bastiani, F., R. A. Rigby, D. M. Stasinopoulous, A. H. M. A. Cysneiros, and M. A. Uribe-Opazo (2018). “Gaussian Markov random field spatial models in GAMLSS”. In: Journal of Applied Statistics 45.1, pp. 168–186.; Fahrmeir, L., T. Kneib, S. Lang, and B. Marx (2013). “Regression models”. In: Regression. Springer, pp. 21–72.; Fik, T. J., D. C. Ling, and G. F. Mulligan (2003). “Modeling spatial variation in housing prices: a variable interaction approach”. In: Real Estate Economics 31.4, pp. 623–646.; Florencio, L., F. Cribari-Neto, and R. Ospina (2012). “Real estate appraisal of land lots using GAMLSS models”. In: Chilean Journal of Statistics (ChJS) 3.1, pp. 75–91.; Housing, Ministry of (2011). LEY 1450 DE 2011. URL: http://www.minvivienda.gov. co/NormativaInstitucional/1450%20-%202011.pdf (visited on 03/11/2020).; IAAO (2017). “Standard on Mass Appraisal of Real Property”. In: Kullback, Solomon and Richard A Leibler (1951). “On information and sufficiency”. In: The annals of mathematical statistics 22.1, pp. 79–86; Lin, C. C. and S. B. Mohan (2011). “Effectiveness comparison of the residential property mass appraisal methodologies in the USA”. In: International Journal of Housing Markets and Analysis.; Marra, G. and R. Radice (2020). GJRM: Generalised Joint Regression Modelling. R package version 0.2-2. URL: https://CRAN.R-project.org/package=GJRM; Mayer, M., S. C. Bourassa, M. Hoesli, and D. Scognamiglio (2019). “Estimation and updating methods for hedonic valuation”. In: Journal of European Real Estate Research; Nelder, J. A. and R. W. M. Wedderburn (1972). “Generalized linear models”. In: Journal of the Royal Statistical Society: Series A (General) 135.3, pp. 370–384.; Paradis, E. and K. Schliep (2019). “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R”. In: Bioinformatics 35, pp. 526–528.; R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: http://www.R-project.org/.; Razen, A., W. Brunauer, N. Klein, S. Lang, and N. Umlauf (2015). “Hedonic house price modeling based on multilevel structured additive regression”. In: Computational Approaches for Urban Environments. Springer, pp. 97–122.; Rigby, R. A. and D. M. Stasinopoulos (1996). “Mean and dispersion additive models”. In: Statistical theory and computational aspects of smoothing. Springer, pp. 215–230. — (2005). “Generalized additive models for location, scale and shape”. In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.3, pp. 507–554.; Ruiz, F. and G. Vallejo (2010). “Using land registration as a tool to generate municipal revenue: Lessons from Bogota”. In: World Bank, Washington, DC.; Särndal, C., B. Swensson, and J.Wretman (2003). Model assisted survey sampling. Springer Science & Business Media; Stasinopoulos, D. M., R. A. Rigby, G. Z. Heller, V. Voudouris, and F. De Bastiani (2017). Flexible regression and smoothing: using GAMLSS in R. CRC Press.; UAECD (2019). Informe de Gestión. Plan de Acción Proyectos de Inversión 2019. URL: http: //www.catastrobogota.gov.co/sites/default/files/archivos/planeacion/ Informe%20de%20Gesti%C3%B3n%20Plan%20de%20Acci%C3%B3n%20Proyectos% 20de%20Inversi%C3%B3n%202019.pdf (visited on 03/10/2020).; Wang, D. and V. J. Li (2019). “Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review”. In: Sustainability 11.24, p. 7006; Wood, S. N. (2003). “Thin plate regression splines”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65.1, pp. 95–114. — (2017). Generalized additive models: an introduction with R. CRC press.; HAGER, H AND BAIN, L, Inferential procedures for the generalized gamma distribution, Journal of the American Statistical Association, 65, 1601-1609, 1970.; LAWLESS, J., Inference in the generalized gamma and log-gamma distributions. Technometrics, 22, 409-419, 1980; SÄRNDAL, C.E. AND SWENSSON, B. AND WRETMAN, J., Model Assisted Survey Sampling, Springer, 2003.; RONDON, L. M. AND VANEGAS, L. H. AND FERRAZ, C., Finite population estimation under generalized linear model assistance., Computational Statistics and Data Analysis, 56, 3, 680-697, 2012; BREIDT, F.J. AND OPSOMER, J.D., Local polynomial regression estimators in survey sampling, Annals of Statistics, 28, 7, 1026-1053, 2001.; CARDOZO, C.A. AND PAULA, G.A. AND VANEGAS, L., sglg: Fitting Semi- Parametric Generalized log-Gamma Regression Models, http://CRAN.R-project.org/ package=sglg, 2021; R FOUNDATION FOR STATISTICAL COMPUTING, A Language and Environment for Statistical Computing, https://www.R-project.org/, 2021.; STASINOPOULOS, M. AND RIGBY, B. AND VOUDOURIS, V. AND AKANTZILIOTOU, C. AND ENEA, M. AND KIOSE, D., gamlss: Generalised Additive Models for Location Scale and Shape, https://CRAN.R-project.org/package= gamlss, 2021.; CARDOZO, C.A. AND ALONSO, C.,, sregsurvey: Semiparametric Model-Assisted Estimation in Finite Populations., http://CRAN.R-project.org/package=sregsurvey, 2021.; CARDOZO, C.A. AND PAULA, G.A. AND VANEGAS, L., Generalized log-gamma semiparametric models with P-spline smoothing., Submitted, 2021; LUMLEY, T., survey: analysis of complex survey samples., http://CRAN.R-project. org/package=survey, 2021; G Andrade, G. Ramalho, H. Santana, and V. Corruble. Extending reinforcement learning to provide dynamic game balancing. In Proceedings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning in Computer Games, page 5, Edinburgh, Scotland, July 2005.; M. V. Aponte, G. Levieux, and S. Natkin. Difficulty in videogames : An experimental validation of a formal definition. In ACE ’11: Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology, page 49, Lisbon, Portugal, November 2011.; C. Crawford. Design techniques and ideal for computer games. Byte Magazine, 7(12):96– 108, 1982.; M. S. Csikszentmihalyi. Flow: The Psychology of Optimal Experience. HarperCollins, New York, NY, second edition, 2008; Debi Gartland and Roberta Strosnider. Learning disabilities: Implications for policy regarding research and practice: A report by the national joint committee on learning disabilities. Learning Disability Quarterly, 41(4):195–199, 2018; R. Hunicke and V. Chapman. Ai for dynamic difficulty adjustment in games. 2004.; A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange. Unity: A general platform for intelligent agents. CoRR, abs/1809.02627, 2018; R. Martey, K. Kenski, J. Folkestad, E. Gordis, L. Feldman, H. Zhang, T. Kaufmann, A. Rabkin, A. Shaw, J. Stromer-Galley, B. Clegg, S. Shaikh, and T. Strzalkowski. Measuring game engagement. Simulation Gaming: An Interdisciplinary Journal of Theory, Practice and Research, 11 2014.; H. Moon and J. Seo. Dynamic difficulty adjustment via fast user adaptation. 2020.; A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.; D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by selfsupervised prediction. In ICML, 2017; Joshua Rothman. Video games that embrace irony and death. urlhttps://www.newyorker.com/culture/culture-desk/video-games-that-embrace-ironyand- death, 2014.; J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. page 12, 07 2017; M. Shakhova and A. Zagarskikh. Dynamic difficulty adjustment with a simplification ability using neuroevolution. Procedia Computer Science, 156:395–403, 01 2019.; J. L. González Sánchez, N. Padilla Zea, F. L. Gutiérrez, and M. J. Cabrera. De la usabilidad a la jugabilidad: Diseño de videojuegos centrado en el jugador. 2008.; R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, Cambridge, MA, second edition, 2018; Mohammad Zohaid. Dynamic difficulty adjustment (dda) in computer games: A review. Advances In Human-Computer Interaction, 2018:1–12, 11 2018; DRAY, S., SAID, S., DÉBIAS, F., Spatial ordination of vegetation data using a generalization of Wartenberg’s multivariate spatial correlation. Applied Vegetation Science, Vol. 19(1), 45-56, 2008.; GAVIOLI, A., DE SOUZA, E. G., BAZZI, C. L., GUEDES, L. P. C., SCHENATTO, K., Optimization of management zone delineation by using spatial principal components. Computers and Electronics in Agriculture, Vol. 127, 302-310, 2016.; WARRICK, A. W., NIELSEN, D. R., Spatial variability of soil physical properties in the field. Spatial variability of soil physical properties in the field., 319-344, 1980; Abascal. E. Fernandez, K. Calvo, I. Técnicas factoriales de análisis de tablas múltiples: Nuevos desarrollos empíricos.; Abdi, H., Williams, L. J., Valentin, D., y Bennani-Dosse, M. (2012). STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2):124-167.; Becerra, M. (2010). Comparación del análisis factorial múltiple (AFM) y del análisis en componentes principales para datos cualitativos (Prinqual), en la construcción de índices. Universidad Nacional de Colombia.; Corzo. J. (2003). Análisis Multivariado Aplicado con aplicaciones en R. Notas de clase. Universidad Nacional de Colombia. Departamento de Estadística; Corzo. J. (2017). Análisis factorial múltiple para clasificación de universidades latinoamericanas. Comunicaciones en Estadística. Junio 2017, Vol. 10, No. 1, pp. 57-82; Gonzalez, J. Rodriguez, O. Algoritmo de implementación del método STATIS; Lavit, C., Escoufier, Y., Sabatier, R., y Traissac, P. (1994). The ACT (STATIS method). Computational Statistics and Data Analysis, 18(1):97-119.; López, E. (2012). Cómo se cocinan los rankings universitarios. Dendra Médica. Revista de Humanidades 2012; 11(1):43-58.; Martinez Rizo, F. (2011). Los rankings de universidades: una visión crítica. Revista de la educación superior XL(I)(157). Pág. 77-97.; Orduña, E. (2011). Propuesta de un modelo de análisis redinformétrico multinivel para el estudio sistémico de las universidades españolas (2010) [tesis]. Valencia: Universidad Politécnica de Valencia; 2012.; Pinzón, Luz. (2011). BIPLOT CONSENSO PARA ANÁLISIS DE TABLAS MÚLTIPLES. Universidad de Salamanca. Departamento de Estadística. Trabajo de grado, doctorado.; Roberts, D.; Thomson, L. (2007). Reputation management for universities: university league tables and the impact on student recruitment. Leeds, UK: The Knowledge partnership.; Salmi, Jamil (2007a). “League tables as policy instruments: uses and misuses”. En: Higher education management and policy, v. 19, n. 2, 24p.; Siwinski, Waldemar (2005). "Perpektywy- Ten years of rankings". En: Higher education in Europe, v. 27, n. 4, pp. 399-406; Zingaretti, M. L., Demey-Zambrano, J. A., Vicente-Villardon, J. L., y Demey, J. R. (2015). kimod: A k-tables approach to integrate multiple Omics-Data. R package version 0.99.5.; AMAYA, J, Gestión del riesgo sísmico en Medellín, http://bdigital.unal.edu.co/ 6595/1/79597260.15052012.pdf Es, 2012; CÁRDENAS, C., GARZÓN Y., SANTA, L. & CASTILLO, L., Modelo de Poisson para la ocurrencia y magnitud espacio temporal de los sismos en Colombia. http://revistas.udistrital.edu.co/ojs/index.php/UDGeo/article/view/ 3655/5257 UD y la Geomática, 4, 28-43.; COLES, S., An introduction to statistical modeling of extreme values. Springer Series in Statistics, 2001; COMITÉ AIS-300, Amenaza Sísmica. Estudio general de amenaza sísmica de Colombia de Colombia de 2009 Asociación Colombiana de Ingeniería Sísmica, 2010; CORNELL, C. A., Bulletin of the Seismological Society of America 58(5), 1583-1606, 1968; MUÑOZ, D., Conceptos básicos en riesgo sísmico Conceptos básicos del riesgo sísmico (Issue 1, pp. 199-216) Física de la Tierra, Ed. Universidad Complutense de Madrid, 1989.; LUNDBERG, S. , An introduction to explainable AI with Shapley values, https://shap.readthedocs.io, 2018; MENG Y, YANG N, QIAN Z, ZHANG G, What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. Journal of Theoretical and Applied Electronic Commerce Research. 2021 Jun;16(3):466-90; MOLNAR, C., Interpretable machine learning. lulu.com, 2020; ZHANG, X.D. , Machine learning. A Matrix Algebra Approach to Artificial Intelligence, Springer, 2020; ANDERSEN, P. K. AND GILL, R. D., Cox’s regression model for counting processes: a large sample study, The Annals of Statistics, Vol. 10(4), 1100-1120, 1982; BENDER, R. AND AUGUSTIN, T. AND BLETTNER, M., Generating survival times to simulate Cox proportional hazards models, Statistics in medicine, Vol. 24(11), 1713-1723, 2005.; GARCÍA, J. J., Análisis de supervivencia aplicado al estudio de la mortalidad en injertos de inchi (Caryodendron orinocense Karsten), Vol. 12(4), 759-769, 2012; COX, D. R., Regression Models and Life-Tables, Journal of the Royal Statistical Society. Series B, Vol. 34(2), 187-220, 1972; R DEVELOPMENT CORE TEAM, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL: http://www.Rproject. org/, 2021; LAWLESS, J., Statistical Models and Methods for Lifetime data, 2nd ed., John Wiley & Sons, Inc., 2003; ZHAN, L. AND CHEN, G., EWMA charts for monitoring the mean of censored Weibull lifetimes. Journal of Quality Technology, 36, 321-328, 2004; DICKINSON, R. M., OLTEANU-ROBERTS, D. A., RYAN, A. G., WOODALL, W. H. AND VINIING, G. G., CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes. Journal of Quality Technology, 46(4), 340-358, 2014; Almetwally, E. M., Muhammed, H. Z., and El-Sherpieny, E.-S. A. (2020). Bivariate weibull distribution: properties and different methods of estimation. Annals of Data Science, 7(1):163– 193.; Cook, D. O., Kieschnick, R., and McCullough, B. D. (2008). Regression analysis of proportions in finance with self selection. Journal of empirical finance, 15(5):860–867.; Corzo, O. and Bracho, N. (2008). Application of weibull distribution model to describe the vacuum pulse osmotic dehydration of sardine sheets. LWT-Food Science and Technology, 41(6):1108–1115; Dürr, J., Monardes, E., and Cue, R. (1999). Genetic analysis of herd life in quebec holsteins using weibull models. Journal of Dairy Science, 82(11):2503–2513.; Fok, S., Mitchell, B., Smart, J., and Marsden, B. (2001). A numerical study on the application of the weibull theory to brittle materials. Engineering Fracture Mechanics, 68(10):1171–1179.; Gupta, A. K. and Nadarajah, S. (2004). Handbook of beta distribution and its applications. CRC press.; Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of hydrology, 46(1-2):79–88; Liu, C., Aengenheister, S., Herzog, S., Deng, Y., Kaletsch, A., Schmitz, K., and Broeckmann, C. (2021). Application of weibull theory to laser surface textured al2o3. Journal of the European Ceramic Society, 41(2):1415–1426.; Martinez-Florez, G., Bolfarine, H., and Gomez, H. W. (2015). Doubly censored power-normal regression models with inflation. Test, 24(2):265–286.; Mazucheli, J., Menezes, A., and Dey, S. (2018a). The unit-birnbaum-saunders distribution with applications. Chilean Journal of Statistics, 9(1):47–57.; Mazucheli, J., Menezes, A., and Ghitany, M. (2018b). The unit-weibull distribution and associated inference. J. Appl. Probab. Stat, 13:1–22.; Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.; Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 9(6):449–460.; Xu, M., Herrmann, J. W., and Droguett, E. L. (2021). Modeling dependent series systems with q-weibull distribution and clayton copula. Applied Mathematical Modelling, 94:117–138.; Yeh, H.-C. (2009). Multivariate semi-weibull distributions. Journal of multivariate analysis, 100(8):1634–1644.; Zhang, C. W. (2021). Weibull parameter estimation and reliability analysis with zero-failure data from high-quality products. Reliability Engineering & System Safety, 207:107321.; Adler, N. & Golany, B. (2002). Including principal component weights to improve discrimination in data envelopment analysis. Journal of the Operational Research Society, 53(9), 985–991.; Bogetoft, P. & Otto, L. (2020). Benchmarking with DEA and SFA. R package version 0.29; Charles, V., Aparicio, J., & Zhu, J. (2019). The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis. European Journal of Operational Research, 279(3), 929–940.; Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.; Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: Prior to choosing a model. Omega, 44, 1–4.; Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software, volume 2. Springer.; Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls and protocols in dea. European Journal of operational research, 132(2), 245–259.; Fontalvo Herrera, T. J. (2017). Eficiencia de las entidades prestadoras de salud (eps) en colombia por medio de análisis envolvente de datos. Ingeniare. Revista chilena de ingeniería, 25(4), 681–692.; Jenkins, L. & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, 147(1), 51–61; R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; ARNOLD, B. C., GÓMEZ, H. W. Y SALINAS, H. S. On multiple constraint skewed models, Statistics, 43(3), 279-293. 2009.; BOLFARINE, H. MARTÍNEZ-FLÓREZ, G Y SALINAS, H. S. Bimodal symmetricasymmetric power-normal families, Communications in Statistics-Theory and Methods, 47(2), 259-276. 2013.; BOX, G. E. Y COX, D. R. An analysis of transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. 1964; CORONADO RAMÍREZ, S. Y GATICA ARREOLA, L. Problemas de asimetría para el análisis y la predictibilidad del tipo de cambio mexicano, EconoQuantum, 10(1), 77-89. 2013.; ELAL-OLIVERO, DAVID. Alpha-skew-normal distribution, Proyecciones (Antofagasta), 29(3), 224–240. 2010; ELAL-OLIVERO, D. GÓMEZ, H. W Y QUINTANA, F. A. Bayesian modeling using a class of bimodal skew-elliptical distributions, Journal of Statistical Planning and Inference, 139(4), 1484–1492. 2009; GÓMEZ, H.W., ELAL-OLIVERO, D.,SALINAS, H.S Y BOLFARINE, H. Bimodal extension based on the skew-normal distribution with application to pollen data, Environmetrics, 22(1), 50–62. 2011.; GURKA, M. J., EDWARDS, L. J., MULLER, K. E. Y KUPPER, L. L. Extending the Box– Cox transformation to the linear mixed model,Journal of agricultural, biological, and environmental statistics, 169(2), 273-288. 2006; KIM, H. J. On a class of two-piece skew-normal distributions, Statistics, 39(6), 537-553. 2005; MARTÍNEZ-FLÓREZ, G., PACHECO-LÓPEZ, M. Y TOVAR-FALÓN, R. Likelihoo-Based Inference for the Asymmetric Bimodal Power-Normal Model, Revista Colombiana de Estadística. (sometido) 2021; PIEPHO, H.-P Y MCCULLOCH, C. E. Transformations in mixed models: Application to risk analysis for a multienvironment trial,Journal of agricultural, biological, and environmental statistics, 9(1), 123-137. 2004; Mosquera, J., Control estadístico de variables cuantitativas mediante inspección por atributos apoyada en el diseño de galgas con dimensiones óptimas., Doctorado, Universidad Politécnica de Valencia, Valencia, España, 2019; Mosquera, J., F. Aparisi, and E. K. Epprecht, A global scheme for controlling the mean and standard deviation of a process based on the optimal design of gauges, Quality and Reliability Engineering International, 34(5), 718–730, doi:10.1002/qre.2282, 2018a.; Mosquera, J., F. Aparisi, and E. K. Epprecht, A global scheme for controlling the mean and standard deviation of a process based on the optimal design of gauges, Quality and Reliability Engineering International, 34(5), 718–730, 2018b.; Steiner, S. H., P. Lee Geyer, and G. O.Wesolowsky, Shewhart control charts to detect mean and standard deviation shifts based on grouped data, Quality and reliability engineering international, 12(5), 345–353, 1996.; Stevens, W. L., Control by gauging, Journal of the Royal Statistical Society: Series B (Methodological), 10(1), 54–98, doi:10.1111/j.2517-6161.1948.tb00003.x, 1948.; Sistema de Informaci´on Geogr´afico para el Mejoramiento de la Gesti´on Ap´ıcola. (2007). Proyecto de Innovaci´on en la Regi´on del Maule. Serie Experiencias de Innovaci´on para el Emprendimiento Agrario; FAO. (2019). Producci´on de Cera de abeja en Mundo. Organizaci´on de las Naciones Unidas para la Alimentaci´on y la Africultura. Obtenido de http://www.fao.org/faostat/ es/#data/QL/visualize; Garc´ıa, M., R´ıos, L., & ´Alvarez, J. (2016). La polinizaci´on en los sistemas de producci´on agr´ıcola: revisi´on sistem´atica de la literatura. IDESIA. Obtenido de https://scielo. conicyt.cl/pdf/idesia/v34n3/art08.pdf; Pueyo, A. (1991). El sistema de informaci´on geografica: Un instrumento para la planificaci ´on y gestion urbana. Geographicalia. Obtenido de file:///C:/Users/JENIFER% 20TOVIO/Downloads/Dialnet-ElSistemaDeInformacionGeografica-59785%20(1) .pdf; Vec´ın, J. R. (2019). Sistema de informaci´on geogr´afica para la gestion de las explotaciones ap´ıcolas en la provincia de Le´on.; Cabilio, P. & Masaro, J. (1996), ‘A simple test of symmetry about an unknown median’, The Canadian Journal of Statistics 24(3), 349–361.; Corzo, J. A., Vergara, M. E. & Babativa, G. (2017), ‘Una prueba de rachas para la alternativa estocásticamente mayor que en muestras de la distribución lognormal’, Comunicaciones en Estadística 10(2), 297–314.; Corzo, J. & Babativa, G. (2013), ‘A modified runs test for symmetry’, Journal of Statistical Computation and Simulation 83(5), 984–991.; Corzo_Salamanca, J. A., Vergara_Morales, M. E. & Babativa-Márquez, J. G. (2019), ‘A runs test for the hypothesis of symmetry with one sided alternative’, Universitas Scientiarum 24(2), 295–305.; Miao, W., Gel, Y. & Gastwirth, J. (2006), ‘A new test of symmetry about an unknown median’, Random Walk, Sequential Analysis and Related Topics - A Festschrift in Honor of Yuan-Shih Chow. Eds.: Agnes Hsiung, Cun-Hui Zhang, and Zhiliang Ying, World Scientific Publishe pp. 1–19.; Mira, A. (1999), ‘Distribution-free test for symmetry based on Bonferroni’s measure’, Journal of Applied Statistics 26(8), 959–972; Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A. R., Shcherbakova, O., Amlie-Wolf, A., Nie, J., Cui, X. et al. (2020), ‘An integrated multi-omics approach identifies epigenetic alterations associated with alzheimer disease’, Nature genetics 52(10), 1024– 1035.; Niño, J. (n.d.), Análisis diferencial de genes utilizando el método SAM. Taller Estadística Genómica.; Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Chapman and Hall/CRC, Boca Raton, first edition; Davis, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements. Springer, New York, first edition; De’ath, G. (2002). Multivariate regression trees: a new technique for modeling speciesenvironment relationships. Ecology, 83:1105–1117.; Hajjem, A., Bellavance, F., and Larocque, D. (2008). Mixed-effects regression trees for clustered data. Les Cahiers du GERAD, G-2008-57.; Hajjem, A., Bellavance, F., and Larocque, D. (2011). Mixed effects regression trees for clustered data. Statistics and Probability Letters, 81:451–459; Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York, first edition.; Hsiao, W. C. and Shih, Y. S. (2007). Splitting variable selection for multivariate regression trees. Statistics and Probability Letters, 77:265–271.; Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38:963–974.; Larsen, D. R. and Speckman, P. L. (2004). Multivariate regression trees for analysis of abundance data. Biometrics, 60:543–549; Lee, S. K. (2006). On classification and regression trees for multiple responses and its application. Journal of Classification, 23:123–141; Lee, S. K., Kang, H. C., T., H. S., and Kim, K. H. (2005). Using generalized estimating equations lo learn decision trees with multivariate responses. Data Mining and Knowledge Discovery, 11:273–293; Loh, W. Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, 12:361–386.; Pande, A., Li, L., Rajeswaran, J., Ehrlinger, J., Kogalur, U. B., Blackstone, E. H., and Ishwaran, H. (2017). Boosted multivariate trees for longitudinal data. Machine Learning, 106:277–305.; Pinheiro, J., Bates, D., S., D., Sarkar, D., and Team, R. C. (2021). nlme: Linear and Nonlinear Mixed Effects Models. R Package. R Foundation for Statistical Computing, Vienna, Austria.; Posada, J. J. (2012). Efecto de la cantidad de carga en el consumo de combustible en camiones. Tesis de doctorado en ingeniería, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín; R, D. C. T. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.; Segal, M. R. (1992). Tree-structured models for longitudinal data. Journal of the American Statistical Association, 87:407–418; Sela, R., Simonoff, J., and Jing, W. (2021). REEMtree: Regression Trees with Random Effects for Longitudinal (Panel). R Package. R Foundation for Statistical Computing, Vienna, Austria.; Sela, R. J. and Simonoff, J. S. (2009). Re-em trees: a new data mining approach for longitudinal data. NYU Stern Working Paper, SOR-2009-03.; Sela, R. J. and Simonoff, J. S. (2012). Re-em trees: a data mining approach for longitudinal and clustered data. Machine Learning, 86:169–207.; Therneau, T. M. and Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R Package. R Foundation for Statistical Computing, Vienna, Austria.; Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer, New York, first edition.; John AD Aston and Claudia Kirch. Estimation of the distribution of change-points with appliction to fmri data. 2011.; István Berkes, Robertas Gabrys, Lajos Horváth, and Piotr Kokoszka. Detecting changes in the mean of functional observations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(5):927–946, 2009; José Ramón Berrendero, Ana Justel, and Marcela Svarc. Principal components for multivariate functional data. Computational Statistics & Data Analysis, 55(9):2619–2634, 2011.; Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.; LA Gardner. On detecting changes in the mean of normal variates. The Annals of Mathematical Statistics, 40(1):116–126, 1969; Douglas M Hawkins, Peihua Qiu, and Chang Wook Kang. The changepoint model for statistical process control. Journal of quality technology, 35(4):355–366, 2003.; Nikolai Helwig, Eliseo Pignanelli, and Andreas Schütze. Condition monitoring of a complex hydraulic system using multivariate statistics. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pages 210–215. IEEE, 2015.; J Kiefer. K-sample analogues of the kolmogorov-smirnov and cramér-v. mises tests. The Annals of Mathematical Statistics, pages 420–447, 1959; D.A. Latorre. Code change point for mfda thesis. https://github.com/dalatorrem/ code_tesis_PCMFD.git, 2019; Darío Latorre and Rubén Guevara. Detección de puntos de cambio para datos funcionales multivariados. 2021.; Tze-San Lee. Change-point problems: bibliography and review. Journal of Statistical Theory and Practice, 4(4):643–662, 2010; ES Page. A test for a change in a parameter occurring at an unknown point. Biometrika, 42(3/4):523–527, 1955.; Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.; Paul J Plummer and Jie Chen. A bayesian approach for locating change points in a compound poisson process with application to detecting dna copy number variations. Journal of Applied Statistics, 41(2):423–438, 2014; James O Ramsay. Functional data analysis. Encyclopedia of Statistical Sciences, 4, 2004; Ashish K Sen and Muni S Srivastava. On multivariate tests for detecting change in mean. Sankhy¯a: The Indian Journal of Statistics, Series A, pages 173–186, 1973; KD Zamba and Douglas M Hawkins. A multivariate change-point model for change in mean vector and/or covariance structure. Journal of Quality Technology, 41(3):285–303, 2009.; Fransisco Zamora-Martinez, Pablo Romeu, Pablo Botella-Rocamora, and Juan Pardo. Online learning of indoor temperature forecasting models towards energy efficiency. Energy and Buildings, 83:162–172, 2014; ANSELIN, L., Spatial econometrics. A companion to theoretical econometrics, ed. Baltagi, Oxford: Basil Blackwell; pp. 310-330, 2001; CHASCO, C., Modelos de heterogeneidad espacial. Universidad Autónoma de Madrid., 2004; DANE, Estadísticas vitales - eevv. Cifras definitivas año 2018. Bogotá, Colombia., 2019; ESPIN, J. GONZÁLEZ, M., Acerca de la covid-19 como un importante problema para la salud pública y la humanidad. In I Congreso Virtual de Ciencias Básicas Biomédicas de Granma., 2020.; FÁTIMA DE PINA, M., FERREIRA, S., CORREIA, A., CASTRO, A., Epidemiología espacial: nuevos enfoques para viejas preguntas., 2010.; LAWSON, A., WILLIAMS, F., An Introductory Guide to Disease Mapping., 2001.; RUIZ, M., Mapeo de enfermedades con enfoques bayesianos y evaluación del riesgo relativo para la salud pública en Colombia. Universidad Distrital Francisco José de Caldas. Bogotá, Colombia, 2020.; TOWNSEND, A., Mapping Disease Transmission Risk. Enriching Models Using Biogeography and Ecology. Johns Hopkins University press Baltimore., 2014; [Ferraty and Vieu, 2006] Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice. Springer Science & Business Media.; [Frozza, 2010] Frozza, M. (2010). Introdução à análise descritiva de dados funcionais.; [Horváth and Kokoszka, 2012] Horváth, L. and Kokoszka, P. (2012). Inference for functional data with applications, volume 200. Springer Science & Business Media.; [Ortiz Másmela, 2020] Ortiz Másmela, A. M. (2020). Modelo de datos funcionales para la caracterización de la propagación de una epidemia; BOSQ, D., ILinear Processes in Function Spaces Theory and Applications. Springer, 2020.; HORVÁTH, L., KOKOSZKA, P. AND RICE, G. , “TESTING STATIONARITY OF FUNCTIONAL TIME SERIES", Journal of Econometrics, Vol. 179(1), pp. 66-82, 2014.; HYNDMAN, R. J. AND SHAHID ULLAH, M., “ROBUST FORECASTING OF MORTALITY AND FERTILITY RATES: A FUNCTIONAL DATA APPROACH", Computational Statistics and Data Analysis, Vol. 51(10), pp. 4942–4956, 2007.; KOKOSZKA, P. AND REIMHERR, M., Introduction to functional data analysis. CRC Press, 2017; MALEKI, M. R., AMIRI, A. AND CASTAGLIOLA, P., “AN OVERVIEW ON RECENT PROFILE MONITORING PAPERS (2008–2018) BASED ON CONCEPTUAL CLASSIFICATION SCHEME", Computers and Industrial Engineering, Vol. 126, pp. 705–728, 2018.; MONTGOMERY, D., Introduction to statistical quality control, Third Edition., Jhon Wiley and Sons, 2013; NOOROSSANA, R., AND VAGHEFI, S., “EFFECT OF AUTOCORRELATION ON PERFORMANCE OF THE MCUSUM CONTROL CHART", Statistical Methods for Quality Improvement, Vol. 22, pp. 473-480, 2006.; RAMSAY, J. AND SILVERMAN, B. W., Functional Data Analysis, Springer Series in Statistics, 2005; RAYAN, T.P., Statistical Methods for Quality Improvement, Third Edition., John Wiley and Sons, 2011; STEINER, S., JENSEN, W. A., GRIMSHAW, S. D. AND ESPEN, B., “PNONLINEAR PROFILE MONITORING FOR OVEN-TEMPERATURE DATA", Journal of Quality Technology, Vol. 48(1), pp. 84-97, 2016; SHEU, S. H., OUYOUNG, C. W. AND HSU, T. S., “PHASE II STATISTICAL PROCESS CONTROL FOR FUNCTIONAL DATA", Journal of Statistical Computation and Simulation, Vol. 83(11), pp. 2144–2159, 2013; Woodall, W. H., “CURRENT RESEARCH ON PROFILE MONITORING", Producao, Vol. 17(3), pp. 420-425, 2007; ZHANG, N. , “A STATISTICAL CONTROL CHART FOR STATIONARY PROCESS DATA", Technometrics , Vol. 40(1), pp. 24–39, 1998; “PHASE I ANALYSIS OF MULTIVARIATE PROFILES BASED ON REGRESSION ADJUSTMENT", Computers and Industrial Engineering, Vol. 85, pp. 132– 144, 2015.; Israels, A. Z. (1984). Redundancy analysis for qualitative variables. Psychometrika, 49, 331-346.; Israels, A. Z. (1987). Eigenvalue techniques for qualitative data. DSWO Press, Leiden.; Lavit, C. (1985). Application de la méthode statis. Statistique et Analyse des Données, Vol 10, n.1.; Legendre, P., Legendre, L. (1998). Numerical Ecology. 2nd ed. Elsevier; Stewart, D., Love,W. (1968). A general canonical correlation index. Psychological Bulletin, 70, 160-163; ten Berge, J. M. F. (1985). On the relationship between Fortier’s simultaneous linear prediction and Van den Wollenberg’s redundancy analysis. Psychometrika, 50, 121 - 122.; ter Braak, C. (1994). Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience, vol 1, n.2, 127-140; Wollenberg A. L. (1977). Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika, Vol. 42, no. 2; Agostinelli, C., Leung, A., Yohai, V. J., and Zamar, R. H. (2015), “Robust Estimation of Multivariate Location and Scatter in the Presence of Cellwise and Casewise Contamination,” TEST, 24, 441 – 461; Boudt, K., Rousseeuw, P. J., Vanduffel, S., and Verdonck, T. (2020), “The Minimum Regularized Covariance Determinant Estimator,” Statistics and Computing, 30, 113 – 128.; Cabana, E., Lillo, R. E., and Laniado, H. (2019), “Multivariate Outlier Detection Based on a Robust Mahalanobis Distance with Shrinkage Estimators,” Statistical Papers.; Davis, C. M. and Adams, B. M. (2005), “Robust Monitoring of Contaminated Data,” Journal of Quality Technology, 37, 163 – 174; Donoho, D. (1982), “Breakdown Properties of Multivariate Location Estimators,” Technical report, Harvard University, Boston; Falk, M. (1997), “On Mad and Comedians,” Annals of the Institute of Statistical Mathematics, 49, 615 – 644.; Filzmoser, P. (2005), “Identification of Multivariate Outliers: A Performance Study,” Austrian Journal of Statistics, 34, 127 – 138.; Galeano, P., Peña, D., and Tsay, R. (2006), “Outlier Detection in Multivariate Time Series by Projection Pursuit,” Journal of the American Statistical Association, 101, 654 – 669; Hubert, M. and Van der Veeken, S. (2008), “Outlier Detection for Skewed Data,” Journal of Chemometrics, 22, 235 – 246; Kunjunni, S. O. and Sajesh, T. A. (2020), “Sn Covariance,” Communications in Statistics - Theory and Methods, 49, 6133 – 6138; Leung, A., Zhang, H., and Zamar, R. H. (2016), “Robust Regression Estimation and Inference in the Presence of Cellwise and Casewise Contamination,” Computational Statistics & Data Analysis, 99, 1 – 11; Maronna, R. A. and Zamar, R. H. (2002), “Robust Estimates of Location and Dispersion for High-Dimensional Datasets,” Technometrics, 44, 307 – 317.; Navarro-Esteban, P. and Cuesta-Albertos, J. A. (2021), “High-Dimensional Outlier Detection Using Random Projections,” TEST.; Olive, D. J. (2004), “A Resistant Estimator of Multivariate Location and Dispersion,” Computational Statistics & Data Analysis, 46, 93 – 102.; Peña, D. and Prieto, F. J. (2001), “Multivariate Outlier Detection and Robust Covariance Matrix Estimation,” Technometrics, 43, 286 – 300.; — (2007), “Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariate Data,” Journal of Computational & Graphical Statistics, 16, 228 – 254; Pinzón, M. A., Ortiz, S., Holguín, H., Betancur, J. F., Cardona Arango, D., Laniado, H., Arias Arias, C., Muñoz, B., Quiceno, J., Jaramillo, D., and Ramirez, Z. (2021), “Dexamethasone vs Methylprednisolone High Dose for Covid-19 Pneumonia,” PLOS ONE, 16, 1 – 13; Ro, K., Zou, C., Wang, Z., and Yin, G. (2015), “Outlier Detection for High-Dimensional Data,” Biometrika, 102, 589 – 599; Rocke, D. M. (1989), “Robust Control Charts,” Technometrics, 31, 173 – 184.; Rocke, D. M. and Woodruff, D. L. (1996), “Identification of Outliers in Multivariate Data,” Journal of the American Statistical Association, 91, 1047 – 1061.; Rousseeuw, P. J. and Croux, C. (1993), “Alternatives to the Median Absolute Deviation,” Journal of the American Statistical Association, 88, 1273 – 1283; Rousseeuw, P. J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum Covariance Determinant Estimator,” Technometrics, 41, 212 – 223.; Stahel, W. A. (1981), Robuste Schatzungen: Infinitesimale Optimalitat und Schatzungen von Kovarianzmatrizen, Ph.D. thesis, ETH, Zurich, Switzerland.; Tarr, G., Müller, S., and Weber, N. (2012), “A Robust Scale Estimator Based on Pairwise Means,” Journal of Nonparametric Statistics, 24, 187 – 199.; Alma, Ö. G. (2011), “Comparison of robust regression methods in linear regression,” Int. J. Contemp. Math. Sciences, 6, 409–421; Falk, M. (1997), “On Mad and Comedians,” Annals of the Institute of Statistical Mathematics, 49, 615 – 644; Filzmoser, P., Maronna, R., and Werner, M. (2008), “Outlier Identification in High Dimensions,” Computational Statistics & Data Analysis, 52, 1694 – 1711.; Jobe, J. M. and Pokojovy, M. (2015), “A Cluster-Based Outlier Detection Scheme for Multivariate Data,” Journal of the American Statistical Association, 110, 1543 – 1551; Kunjunni, S. O. and Sajesh, T. A. (2020), “Sn Covariance,” Communications in Statistics - Theory and Methods, 49, 6133 – 6138.; Liu, R. (1990), “On a Notion of Data Depth Based on Random Simplices,” The Annals of Statistics, 18, 405 – 414.; Liu, R., Parelius, J., and Singh, K. (1999), “Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference,” The Annals of Statistics, 27, 783 – 858; Nadaraya, E. A. (1964), “On estimating regression,” Theory of Probability & Its Applications, 9, 141–142.; Olive, D. J. (2004), “A Resistant Estimator of Multivariate Location and Dispersion,” Computational Statistics and Data Analysis, 46, 93 – 102.; Peña, D. and Prieto, F. J. (2001), “Multivariate Outlier Detection and Robust Covariance Matrix Estimation,” Technometrics, 43, 286 – 300; — (2007), “Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariate Data,” Journal of Computational and Graphical Statistics, 16, 228 – 254.; Rousseeuw, P. J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum Covariance Determinant Estimator,” Technometrics, 41, 212 – 223; Stahel, W. A. (1981), Robuste Schatzungen: Infinitesimale Optimalitat und Schatzungen von Kovarianzmatrizen, Ph.D. thesis, ETH, Zurich, Switzerland; Wasserman, L. (2006), All of nonparametric statistics, Springer Science & Business Media; Watson, G. S. (1964), “Smooth Regression Analysis,” Sankhy¯a: The Indian Journal of Statistics, Series A (1961-2002), 26, 359–372; Yatchew, A. (1998), “Nonparametric regression techniques in economics,” Journal of Economic Literature, 36, 669–721.; Zuo, Y. and Serfling, R. (2000), “General Notions of Statistical Depth Function,” The Annals of Statistics, 28, 461 – 482; C. T. Chen. Signal and Systems. Oxford University Press, 2004.; B. V. Gnedenko. Theory of Probability. Chelsea Publising Company, 1989.; A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to Theory of Statistics. McGraw Hill, 3 edition, 1974; A. Papoulis. Signal and Systems. McGraw Hill, 1984.; A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw Hill, 3 edition, 1991; Acevedo, K., Quejada, R., Yañez, M. (2011) Estudio transversal de los determinantes del trabajo infantil en Cartagena, año 2007. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud 2 (9), 589-606; Aparicio, S. (2013). Análisis intra-grupo sobre el trabajo infantil en Colombia: Un ejercicio cuanti y cualitativo. Instituto Colombiano de Bienestar Familiar, Bogotá, 46.; Aguirre, E. (2008). La percepción sobre el trabajo infantil de niñas, niños y padres de familia en sectores populares de la ciudad Bogotá, D.C. 6ª Reunión del Grupo de Trabajo Familia e Infancia de CLACSO, Familias latinoamericanas, pasado y presente: Continuidades, transiciones y rupturas.; Bernal, R., Cárdenas, M. (2007). Child labor in Colombia. NBER working paper, Universidad de Los Andes y Fedesarrollo; Briceño-Ayala, L., Pinzón, A. (2004). Efectos del trabajo infantil en la salud del menor trabajador. Revista de Salud Pública 6 (3), 270-288; Child-Soldiers-International. (2001). Child Soldiers Global Report 2001 - Colombia. Child Soldiers International; ICBF. (2013). Una doble mirada al trabajo infantil en Colombia. Observatorio del Bienestar de la Niñez, Instituto Colombiano de Bienestar Familiar.; Manacorda, M. (2006). Child Labor and the Labor Supply of Other Household Members. The American Economic Review 96 (5), 1788-1801.; OIT. (2004). Child labour. A textbook for university students. International Programme on the Elimination of Child Labour, International Labour Organization, Geneve, 307.; OIT. (2017). Estimaciones mundiales sobre el trabajo infantil. International Labour Organization; Palacio, J., Amar, J., Madariaga, C., Llinás, H., Contreras, K. (2007). La calidad de vida en salud en los menores trabajadores de Toluviejo (Sucre). Investigación y Desarrollo 15 (2), 366-393.; Pedraza, A., Ribero, R. (2005). Los determinantes del trabajo infanto-juvenil en Colombia. Coyuntura Social 33, 81-101.; Pinzón, A., Briceño, L., Gómez, A., Latorre, C. (2003). Trabajo infantil en las calles de Bogotá. Rev. Cienc. Salud 1 (2), 151-163; Santos, R. (2018). Blessing and curse. The gold boom and local development in Colombia. World Development 106, 337–355.; DALENIUS & HODGES, Minimum variance stratification, Journal of the American Statistical Association 54, 88–101. 1959; SÄRNDAL, S., BENGT, C. & WRETMAN, J., Model Assisted Survey Sampling, Springer- Verlag GmbH, 2003; SCHULZ, M. E., Hábitos de estudio, https://www.redalyc.org/pdf/4981/ 498154006024.pdf, 2008; SIEGEL., Nonparametric statistics for the behavioral sciences, https://www.semanticscholar.org/paper/ Nonparametric-statistics-for-the-behavioral-%2F-Siegel/ 943927a8d9e6c732ee3a8df99907244648e121ea, 1956.; SOLANO, R. B., Programa educativo de técnicas y hábitos de estudio para lograr aprendizajes sustentables en estudiantes de nuevo ingreso al nivel superior, Iberoamericana de Educación 76(2), 73–94. 2018; SISTEMA NACIONAL DE INFORMACIÓN DE LA EDUCACIÓN SUPERIOR-SNIES, Documento Metodológico, 2020; PAGÈS, J., & HUSSON, F., Multiple factor analysis: Presentation of the method using sensory data. Mathematical and statistical methods in food science and technology (2014): 87-102; Hastie, T., Tibshirani, R., Friedman, J. (2008, 30 septiembre). The elements of statistical learning - Data mining, inference, and prediction (Preface to the Second Edition). Springer Series in Statistics; Hernández, F., Mazo, M. (2020, 30 octubre). Modelos de regresion. github.https:// fhernanb.github.io/libro_regresion/index.html; Vallalta Rueda, J. F. (2021). CRISP-DM: una metodología para minería de datos en salud. health data miner.https://healthdataminer.com/data-mining/crisp-dm-una-metodologia-para-; Vallalta Rueda, J. F. (2021). CRISP-DM: una metodología para minería de datos en salud. health data miner.https://healthdataminer.com/data-mining/crisp-dm-una-metodologia-para-Malohlava, M., Candel, A. (2021, septiembre). Gradient Boosting Machine with H2O (A. Bartz, Ed.).https://www.h2o.ai/resources/; M. Kuhn y K. Johnson, Feature engineering and selection: A practical approach for predictive models. CRC Press, 2019.; A. Hern´andez-Blanco, B. Herrera-Flores, D. Tom´as y B. Navarro-Colorado, “A Systematic Review of Deep Learning Approaches to Educational Data Mining,” Complexity, vol. 2019, p´ag. 22, 2019, ISSN: 10990526. DOI:10.1155/2019/1306039; R. D. Reason, “Student variables that predict retention: Recent research and new developments,” NASPA journal, vol. 46, n.o 3, p´ags. 482-501, 2009; J. P. Bean, “Dropouts and turnover: The synthesis and test of a causal model of student attrition,” Research in Higher Education, vol. 12, n.o 2, p´ags. 155-187, 1980, ISSN: 1573- 188X. DOI:10.1007/BF00976194.; W. G. Spady, “Dropouts from higher education: An interdisciplinary review and synthesis,” Interchange, vol. 1, n.o 1, p´ags. 64-85, 1970, ISSN: 1573-1790. DOI: 10 . 1007 / BF02214313.; V. Tinto y J. Cullen, “Dropout in Higher Education: A Review and Theoretical Synthesis of Recent Research.,” 1973; J. Silva, A. Castro Sarmiento, N. Mar´ıa Santodomingo, N. M´arquez Blanco, W. Cadavid Basto, H. Hern´andez P, J. Navarro Beltr´an, J. de la Hoz Hern´andez y L. Romero, “Data mining to identify risk factors associated with university students dropout,” Communications in Computer and Information Science, vol. 1071, p´ags. 44-52, 2019. DOI:10.1007/978-981-32-9563-6_5.; S. A. Ahmed y S. I. Khan, “A machine learning approach to Predict the Engineering Students at risk of dropout and factors behind: Bangladesh Perspective,” en 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019, 2019. DOI:10.1109/ICCCNT45670.2019.8944511.; B. R. Cuji Chacha, W. L. Gavilanes L´opez, V. X. Vicente Guerrero y W. G. Villacis Villacis, “Student Dropout Model Based on Logistic Regression,” Communications in Computer and Information Science, vol. 1194 CCIS, p´ags. 321-333, 2020. DOI: 10 . 1007/978-3-030-42520-3_26.; P. Meedech, N. Iam-On y T. Boongoen, “Prediction of Student Dropout Using Personal Profile and Data Mining Approach,” en Intelligent and Evolutionary Systems, K. Lavangnananda, S. Phon-Amnuaisuk,W. Engchuan y J. H. Chan, eds., Cham: Springer International Publishing, 2016, p´ags. 143-155, ISBN: 978-3-319-27000-5. DOI:10.1007/978- 3-319-27000-5_12.; D. Vila, S. Cisneros, P. Granda, C. Ortega, M. Posso-Y´epez e I. Garc´ıa-Santill´an, “Detection of desertion patterns in university students using data mining techniques: A case study,” Communications in Computer and Information Science, vol. 895, p´ags. 420-429, 2019, ISSN: 18650929. DOI:10.1007/978-3-030-05532-5_31.; N. Fenton y J. Bieman, Software metrics: a rigorous and practical approach, 3.a ed. CRC press, 2014, p´ag. 618.; B. King y E. Minium, Statistical Reasoning in Psychology and Education. Wiley, 2003, ISBN: 9780471211877; M. Tomczak y E. Tomczak, “The need to report effect size estimates revisited. An overview of some recommended measures of effect size,” Trends in sport sciences, vol. 1, n.o 21, p´ags. 19-25, 2014; L. M. Rea y R. A. Parker, Designing and conducting survey research: A comprehensive guide. John Wiley & Sons, 2014.; Ministerio de Educaci´on Nacional de Colombia MEN, Sistema Nacional de Indicadores Educativos para los Niveles de Preescolar, B´asica y Media en Colombia, 2014.; A. Elbir, E. G¨und¨uz y B. Diri, “Estimating the School Dropout Trend by Using Data Mining Methods [Veri Madenciliˇgi Y¨ontemleri Kullanarak Okul Birakma Eˇgiliminin Tahmin Edilmesi],” en Proceedings - 2018 Innovations in Intelligent Systems and Applications Conference, ASYU 2018, 2018. DOI:10.1109/ASYU.2018.8554022; A. Serra, P. Perchinunno y M. Bilancia, “Predicting student dropouts in higher education using supervised classification algorithms,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10962 LNCS, p´ags. 18-33, 2018. DOI:10.1007/978-3-319-95168-3_2.; A. Sangodiah, P. Beleya, M. Muniandy, L. E. Heng y C. Ramendran Spr, “Minimizing student attrition in higher learning institutions in Malaysia using support vector machine,” Journal of Theoretical and Applied Information Technology, vol. 71, n.o 3, p´ags. 377-385, 2015.; D. Sansone, “Beyond EarlyWarning Indicators: High School Dropout and Machine Learning,” Oxford Bulletin of Economics and Statistics, vol. 81, n.o 2, p´ags. 456-485, 2019. DOI:10.1111/obes.12277.; MA Aliou and T Baldé. Fitting SIR model to COVID-19 pandemic data and comparative forecasting with machine learning. BMJ, 2020; Seo Yoon Chae, KyoungEun Lee, Hyun Min Lee, Nam Jung, Quang Anh Le, Biseko Juma Mafwele, Tae Ho Lee, Doo Hwan Kim, and Jae Woo Lee. Estimation of infection rate and predictions of disease spreading based on initial individuals infected with COVID-19. Frontiers in Physics, page 311, 2020.; Ian Cooper, Argha Mondal, and Chris G Antonopoulos. A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solitons & Fractals, 139:110057, 2020; Giovani L Vasconcelos, Luan P Cordeiro, Gerson C Duarte-Filho, and Arthur A Brum. Modeling the epidemic growth of preprints on COVID-19 and SARS-CoV-2. Frontiers in Physics, 9:125, 2021; Ke Wu, Didier Darcet, Qian Wang, and Didier Sornette. Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world. Nonlinear dynamics, 101(3):1561–1581, 2020; Hyun Mo Yang, Luis Pedro Lombardi Junior, and Ariana Campos Yang. Are the SIR and SEIR models suitable to estimate the basic reproduction number for the COVID-19 epidemic? medRxiv, 2020.; BENTLEY, J.L., Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9): 509-517, 1975.; BLANCO, L., ARUNACHALAM, V., DHARMARAJA, S., Introduction to probability and sthocastic processes with applications. Wiley Online Library, 2012; CHARIKAR, M., SIMINELAKIS, P., Hashing-based-estimators for kernel density in high dimensions. In 2017 IEEE 58th Annual Symposium of Foundations of Commputer Science (FOCS), pages 1032-1043. IEEE, 2017.; CHATZIS, S., KORKINOF, D. & DEMIRIS, Y., A quantum-statistical approach toward robot learning by demonstration. IEEE Transactions on Robotics, 28(6): 1371-1381, 2012; DAO, T., DE SA, C. & RÉ, C., Gaussian quadrature for kernel features. Advances in neural information processing systems, 30:6109, 2017; MUÑOZ, M., BLANCO, L., Introducción a la teoría avanzada de la probabilidad. Vol.2 Universidad Nacional de Colombia, 2002; GONZÁLEZ, F., GALLEGO, A., TOLEDO, S. & VARGAS, V., Learning with density matrices and random features, 2021.; WORACHARTCHEEWAN, APILAK, SCHADUANGRAT, NALINI, PRACHAYASITTIKUL, VIRAPONG, NANTASENAMAT, C., Data mining for the identification of metabolic syndrome status., 11(3), Excli, 369–373. 2010.; GÓMEZ, L. A. , Las enfermedades cardiovasculares: un problema de salud pública y un reto global. Biomédica, 31(4), 2011; GIRALDO-GIRALDO, N. A., ZEA-PERDOMO, A. M., TOBÓN-ARISTIZÁBAL, T., ESTRADA-RESTREPO, A., Síndrome metabólico en un grupo de adultos mayores no institucionalizados según criterios de organismos internacionales. Perspectivas en Nutrición Humana, 18(1), 25-35, 2016; CHESSEL, D., DUFOUR, A. B. THIOULOUSE, J., The ade4 Package - I: Onetable Methods. R News 4(1), 5–10 2004; R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. Vienna: Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0, 2020.; COLLAZOS, C., OTERO, H., ISAZA, J., MORA, C., Enseñanza de la electrostática por medio de la construcción de prototipos de bajo costo y el aprendizaje basado en proyectos., Formación Universitaria, 115-122, 2016; DE VINCEZI, A., TUDESCO, F., La educación como proceso de mejoramiento de la calidad de vida de los individuos y de la comunidad. Rev Iber Educ, 1-12, 2009; EDEL, R., El rendimiento académico: concepto, investigación y desarrollo. Rev Iber Calidad, Eficacia y Cambio en Educación, 4-6, 2003.; GONZÁLEZ, S. ¿Qué impacto tienen las actividades extraescolares sobre los aprendizajes de los niños y los jóvenes?. Fundació Jaume Bofill, 1-21, 2015; RODRÍGUEZ, E., CORTÉS, M. Evaluación de la estrategia pedagógica .Aprendizaje basado en proyectos": Percepción de los estudiantes. Rev de Avaliação da Educação Superior, 143-158, 2010; Banco Mundial (2009). La calidad de la educación en Colombia: Un análisis y algunas opciones para un programa de política. Unidad de Gestión del Sector de Desarrollo Humano Oficina Regional de América Latina y el Caribe.; Chessel, D., & Dufour, A. (2004). ADE4: Analisis of Evironmental Data: Exploratory.; Filmus, D. (1994). El papel de la educación frente a los desafíos de las transformaciones científico-tecnológicas. Para qué sirve la escuela.; Fondo de las Naciones Unidas para la Infancia. (2016). Estado Mundial de la Infancia 2016: Una oportunidad para cada niño. UNICEF; Hanushek, E. (1986). The economics of schooling: production and efficiency in public schools. Journal de Economic Literature, 24(3), 1141-1177.; Heinesen, E. & Graversen, B. (2005). The Effect of School Resources on Educational Attainment: Evidence from Denmark. Bulletin of Economic Research, 57(2), 109-43.; Jaimes-Amorocho, H., & Lugo, E. (2017). Los Acuerdos de Paz de la Habana: una oportunidad para disminuir la pobreza y la exclusión rural en Sucre, Colombia. Revista Colombiana de Ciencia Animal-RECIA, 207-215.; Mulford, B. (2006). Liderazgo para mejorar la calidad de la educación secundaria: algunos desarrollos internacionales. Profesorado. Revista de Currículum y Formación de Profesorado, 10(1), 0.; Pardo, C., & Del Campo, P. (2007). Combinacion de metodos factoriales y de analisis de conglomerados en R: El paquete FactoClass. Revista Colombiana de Estadistica.; Pérez, F. (2016). El papel de la educación en el posconflicto. Corporación Viva la Ciudadanía. Edición, 496; Ramírez, J. C., Parra-Peña, R. I., Corredor Fonseca, A., & González Arévalo, L. (2016). Escalón competitividad de los departamentos de Colombia; Tedesco, J. C., & López, N. (2002). Desafíos a la educación secundaria en América Latina. Revista de la CEPAL; Torres Quevedo, G. (2008). La formación de competencias laborales del bachiller técnico en la especialidad agronomía.; Agudelo-G´omez, D., Cer´on-Mu˜noz, M. & Restrepo-Betancur, L. (2008). Modelaci´on de funciones de crecimiento aplicadas a la producci´on animal. Rev Colomb Cienc Pecu; 21:39-58.; Dom´ınguez-Viveros, J., R. N´u˜nez-Dom´ınguez, R. Ram´ırezValverde, y A. Ru´ız-Flores. (2003). Influencias ambientales e ´ındice de constancia para caracter´ısticas de crecimiento en bovinos Tropicarne. T´ec. Pecu. M´ex. 41:1-18.; Dom´ınguez-Viveros, J, Rodr´ıguez-Almeida, F. A, N´u˜nez-Dom´ınguez, R, Ram´ırez- Valverde, R, Ortega-Guti´errez, J. ´A, & Ruiz-Flores, A. (2013). Ajuste de modelos no lineales y estimaci´on de par´ametros de crecimiento en bovinos tropicarne. Agrociencia, 47(1), 25-34.; Durbin, J., and G. S. Watson. (1951). Testing for serial correlation in least – squares regression. Biometrika 38: 159 – 171.; Fuente, S. d. (2011). Componentes Principales. Madrid: Universidad autonoma de Madrid; Garcia, J. (2014). Variables involucradas en la pr´actica individual y colectiva de h´abitos saludables. Salud Publica, 719-732; Godino, P.-F. (2015). Perspectiva amplicada del conocimiento didactico-matem´atico del profesor. Paradigma, 87-109; Gonzalez, M. (2005). La alimentaci´on y salud. Las matem´aticas como herramienta para establecer conexiones. Uni´on, 3-14; Ib´a˜nez, M. A. (2016). Contraloria municipal de Sincelejo. Obtenido de https:// contraloriasincelejo.gov.co/primer-informe-ambiental/; Ram´ırez, H. (2002). Acondicionamiento f´ısico y estilos de vida saludable. Colombia M´edica, 3-5.; Banister,D. The sustainable mobility paradigm Transport Policy, 15(2), 73-80, 2008.; Osorio, A. Nuevas fuentes y retos para el estudio de la movilidad urbana. Cuadernos Geográficos, 56(3), 247-267,2017; Gutierrez, J. Cómo aplicar big data en la planificación del transporte: el uso de datos de GPS en el análisis de la movilidad urbana. BID. Nota técnica nº idb-tn-1944, 2019.; Chapman, P. CRISP-DM 1.0 Step-by-step data mining guide. Obtenido de https://www.themodeling- agency.com/crisp-dm.pdf, 2019.; Bos, M. (2016), educaci´on en America Latina y el Caribe: Diagnostico y Perspectiva. BID-OCDE.; Costa M. Domingos A.(2019) promover o ensino da matematicanum contexto de formacaoprofissional com STEM. EducacionMatematica, vol31,num 1; Campo E,(2007). Combinacion de m´etodos factoriales de an´alisis de conglomerados en R: el paquete factorclass. Revista colombiana de estad´ıstica vol 30, no2 pp231 a245; OECD. (2015). The ABC of GenderEquality in Education. Paris: OECD Publishing; UNESCO InstituteforStatistics. (2018). Women in Science (FS/2018/SCI/51). Recuperado de http://uis.unesco.org/sites/default/files/documents/ fs51-women-in-science-2018-en.pdf; VERTEL-MORINSON, M., MENDEZ-RAMOS, M.C., TOVIO-GUTIERREZ, Y.A. Educación rural en Sucre-Disertación desde el análisis multivariado. Editorial Universidad de Sucre, ISBN 978-958-59926-3-4, 2018; AGUIRRE PEÑA, L., & GARCÍA GUERRERO, M (2019)., El imaginario de la comunicación política en el ciberterritorio de Twitter., Revista de la Universidad de La Salle, 82, 59-68.; MINISTERIO DE EDUCACIÓN. (2019)., Más de 120.000 usuarios de ICETEX se beneficiarán con el plan de alivios e incentivos anunciado por el Gobierno Nacional. https://www.mineducacion.gov.co/1759/w3-printer-391628.html; PRESIDENCIA DE LA REPÚBLICA. (28 DE NOVIEMBRE DE 2019)., Ley del Presupuesto General de la Nación. https://id.presidencia.gov.co/Documents/ 191129-Objecion-gubernamental-inconveniencia.pdf; PRESIDENCIA DE LA REPÚBLICA. (26 DE DICIEMBRE DE 2019), Plan Nacional de Desarrollo. Ley 1955 de 2019. https://id.presidencia.gov.co/Documents/ 191230-Decreto-2365-del-26-diciembre-del-2019.pdf; SAURA, G., MUÑOZ MORENO, J., LUENGO NAVAS, J., & MARTOS ORTEGA, J. (2017)., Protestando en Twitter: ciudadanía y empoderamiento desde la educación pública., Comunicar, 15(53), 39-48. doi: https://dialnet.unirioja.es/servlet/ articulo?codigo=6121753; Bivand, R., Yu, D., Nakaya, T., Garcia-Lopez, M.-A., Bivand, M. R. (2017). Package "spgwr". R package; Fotheringham, A. S., Brunsdon, C., Charlton, M. (2002). GeographicallyWeighted Regression: The Analysis of Spatially Varying Relationships.; Fotheringham, A. S., Crespo, R., Yao, J. (2015). Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47(4), 431-452; Huang, B., Wu, B., Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383-401; Nakaya, T., Charlton, M., Lewis, P. (2014). GWR4 user manual. Windows Application for Geographically Weighted Regression Modelling; LI Q, GUAN X, WU P, WANG X, ZHOU L, TONG Y, ET AL. Early Transmission Dynamics inWuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020; 382(13): p. 1199-1207; ORGANIZACIÓN MUNDIAL DE LA SALUD. [Online]. [citado 2021 04 05]. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019; INSTITUTO NACIONAL DE SALUD. [Online]. [citado 2021 04 05]. Disponible en: https: //www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx.; WORLD HEALTH ORGANIZATION. Coronavirus (COVID-19) Dashboard. [Online]. [citado 2021 04 05]. Disponible en: https://covid19.who.int/.; INSTITUTO NACIONAL DE SALUD. Estudio Nacional de Seroprevalencia. [Online].; 2020 [citado 2021 04 05]. Disponible en: https://www.ins.gov.co/ estudio-nacional-de-seroprevalencia/reporte.html#curso.; DEPARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICAS. DANE. [Online].; 2020 [citado 2021 02 09]. Disponible en: https://www.dane. gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/ proyecciones-de-poblacion; MAHARAJ EA, D’URSO P, CAIADO J. Time Series Clustering and Classification. 1st ed.: CRC Press Taylor and Francis Group; 2019; PEÑA D, TSAY R. Statistical Learning for Big Dependent Data New Jersey: Jhon Wiley and Sons, Inc.; 2021.; MINISTERIO DE SALUD. Brasil. [Online].; 2021 [citado 2021 05 18]. Disponible en: https://covid.saude.gov.br/.; FARIA N, MELLAN T, WHITTAKER C, CLARO I, DA S. CANDIDO D, MISHRA S, ET AL. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv Prepr Serv Heal Sci. 2021.; MURRAY, J. D. , Mathematical Biology, Vol. 1 y 2, 2nd ed., Springer, 2002.; OKUBO, A. Y LEVIN, S. A., Diffusion and Ecological Problems, Modern Perspectives. Interdisciplinary and Applied Mathematics, Springer, 2001.; https://repositorio.unal.edu.co/handle/unal/87779; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; repositorio.unal.edu.co
Availability: https://repositorio.unal.edu.co/handle/unal/87779
Nájsť tento článok vo Web of Science