Výsledky vyhledávání - ((((programové OR program) OR programm) OR programovací) OR programovanie) system informaci

Upřesnit hledání
  1. 1

    Přispěvatelé: University/Department: Universitat Autònoma de Barcelona. Departament de Física

    Thesis Advisors: Muñoz Tapia, Ramon

    Zdroj: TDX (Tesis Doctorals en Xarxa)

    Popis souboru: application/pdf

    Přístupová URL adresa: http://hdl.handle.net/10803/134830

  2. 2

    Přispěvatelé: University/Department: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions

    Thesis Advisors: Ruffini i Fores, Giulio

    Zdroj: TDX (Tesis Doctorals en Xarxa)

    Time: 621.3

    Popis souboru: application/pdf

  3. 3
  4. 4

    Přispěvatelé: University/Department: Universitat de València. Departament de Fisiologia

    Thesis Advisors: Such Miquel, Luis, Such Belenguer, Luis

    Zdroj: TDX (Tesis Doctorals en Xarxa)

    Popis souboru: application/pdf

  5. 5
  6. 6
  7. 7

    Alternate Title: Inviting women to breast cancer screening programme by screening centers – questionnaire survey and analysis of the registry of the screening programme in the Czech Republic.

    Zdroj: Czech Radiology / Ceska Radiologie. Sep2024, Vol. 78 Issue 2, p115-119. 5p.

  8. 8
  9. 9

    Zdroj: Kučerová, Helena Znalostní báze pro obor organizace informací a znalostí: Představení projektu Programu aplikovaného výzkumu a vývoje národní a kulturní identity (NAKI) DF13P01OVV013 2013–2015., 2013 . In IKI - Informace, konkurenceschopnost, inovace, Prague (Czech Republic), 21 November 2013. (Unpublished) [Presentation]

    Popis souboru: slideshow

    Přístupová URL adresa: http://eprints.rclis.org/21057/

  10. 10
  11. 11

    Alternate Title: Evaluation of the colorectal cancer screening program in the Czech Republic. (English)

    Zdroj: Gastroenterology & Hepatology / Gastroenterologie a Hepatologie; 2025, Vol. 79 Issue 5, p361-370, 10p

    Geografický termín: CZECH Republic

  12. 12
  13. 13

    Alternate Title: Bezpečnost informací v malých a středních firmách.

    Autoři: Král, David1 kral@sting.cz

    Zdroj: Economic Studies & Analyses / Acta VSFS. 2011, Vol. 5 Issue 1, p61-73. 13p. 5 Diagrams, 9 Charts.

  14. 14
  15. 15

    Přispěvatelé: Universidad Nacional de Colombia. Sede Bogotá. Facultad de Ciencias. Departamento de Estadística

    Geografické téma: 21 al 24 de septiembre de 2021

    Popis souboru: 383 páginas; application/pdf

    Relation: Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using gibbs sampling. Journal of educational statistics, 17(3):251–269; Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association, 88(422):669–679.; Carroll, R. and Pachón, M. (2016). The unrealized potential of presidential coalitions in Colombia. Legislative Institutions and Lawmaking in Latin America, pages 122–147.; Clinton, J., Jackman, S., and Rivers, D. (2004). The statistical analysis of roll call data. American Political Science Review, pages 355–370; Colprensa (2013). El PIN cambió el nombre de su partido a Opción Ciudadana. El país.; Fowler, J. H. (2006). Legislative cosponsorship networks in the us house and senate. Social Networks, 28(4):454–465; Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian data analysis. CRC press; Gerrish, S. and Blei, D. (2012). How they vote. Issue-adjusted models of legislative behavior. Advances in neural information processing systems, 25:2753–2761.; Hare, C., Armstrong, D. A., Bakker, R., Carroll, R., and Poole, K. T. (2015). Using bayesian Aldrich-Mckelvey scaling to study citizens’ ideological preferences and perceptions. American Journal of Political Science, 59(3):759–774.; Jackman, S. (2001). Multidimensional analysis of roll call data via bayesian simulation: Identification, estimation, inference, and model checking. Political Analysis, 9(3):227–241.; Jackman, S. (2004). Bayesian analysis for political research. Annu. Rev. Polit. Sci., 7:483–505.; Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American statistical Association, 91(435):1343–1370.; Krehbiel, K. (1988). Spatial models of legislative choice. Legislative Studies Quarterly, pages 259–319.; Krehbiel, K. (1998). Pivotal politics: A theory of US lawmaking. University of Chicago Press.; Lofland, C. L., Rodríguez, A., Moser, S., et al. (2017). Assessing differences in legislators’ revealed preferences: A case study on the 107th US senate. The Annals of Applied Statistics, 11(1):456–479.; Patz, R. J. and Junker, B. W. (1999). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of educational and behavioral Statistics, 24(2):146–178.; Polson, N. G., Scott, J. G., and Windle, J. (2013). Bayesian inference for logistic models using pólya–gamma latent variables. Journal of the American statistical Association, 108(504):1339–1349.; Poole, K. T. (2000). Nonparametric unfolding of binary choice data. Political Analysis, 8(3):211–237.; Rivers, D. (2003). Identification of multidimensional item-response models. Typescript. Department of Political Science, Stanford University.; Rodriguez, A. (2012). Modeling the dynamics of social networks using bayesian hierarchical blockmodels. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(3):218–234.; Rosas, G., Shomer, Y., and Haptonstahl, S. R. (2015). No news is news: Nonignorable nonresponse in roll-call data analysis. American Journal of Political Science, 59(2):511–528.; Sewell, D. K. and Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512):1646–1657.; Sherina, V., McCall, M. N., and Love, T. M. (2019). Fully Bayesian imputation model for non-random missing data in qPCR. arXiv preprint arXiv:1910.13936.; Yu, X. and Rodriguez, A. (2019a). Spatial voting models in circular spaces: A case study of the U.S. house of representatives. Available at SSRN 3381925.; Yu, X. and Rodriguez, A. (2019b). Spherical latent factor model. Available at SSRN 3381925.; Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis with gprior distributions. Bayesian inference and decision techniques.; J. Barrera and E. Peñuela. New formulation for the step response to the overdamped dynamic second order systems. Unpublished.; R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole Cencage Learning, 9 edition, 2011.; C. T. Chen. Analog & digital Control System Design: Transfer Function, State-Space & Algebraic Methods. Saunders College, 1996.; W. Mendenhall and T. Sincich. A Second Course in Statistics: Regresion Analysis. Prentice Hall, 1996.; K. Ogata. Modern Control Engineering. Prentice Hall, 5 edition, 2010.; C. A. Smith and A. B. Corripio. Principles and Practice of Automatic Process Control. Wiley, 1997.; W. Sun and Ya-Xiang. Yuan. Optimization Theory and Methods, Nonlinear Programming. Springer, 2006.; Bahl, R., J. Martinez-Vazquez, and J. Youngman (2010). “Whither the property tax: New perspectives on a fiscal mainstay”. In: Challenging the Conventional Wisdom of the Property Tax, pp. 3–14.; Bax, D., T. Zewotir, and D. North (Dec. 2019). “A gamma generalised linear model as an alternative to log linear real estate price functions”. In: Journal of Economic and Financial Sciences 12. DOI:10.4102/jef.v12i1.476.; Clarke, Kevin A (2007). “A simple distribution-free test for nonnested model selection”. In: Political Analysis, pp. 347–363.; Cole, T. J. and P. J. Green (1992). “Smoothing reference centile curves: the LMS method and penalized likelihood”. In: Statistics in medicine 11.10, pp. 1305–1319.; CONPES Document (Dec. 2019). Table 1. Documento CONPES: REAJUSTE DE AVALÚOS CATASTRALES PARA LA VIGENCIA 2020. CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL. REPÚBLICA DE COLOMBIA. Departamento Nacional de Planeación. URL: https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3% B3micos/3980.pdf.; DANE (2019). The Building Census. URL: https://www.dane.gov.co/index.php/en/ statistics- by- topic- 1/construction/censo- de- edificaciones (visited on 03/10/2020).; De Bastiani, F., R. A. Rigby, D. M. Stasinopoulous, A. H. M. A. Cysneiros, and M. A. Uribe-Opazo (2018). “Gaussian Markov random field spatial models in GAMLSS”. In: Journal of Applied Statistics 45.1, pp. 168–186.; Fahrmeir, L., T. Kneib, S. Lang, and B. Marx (2013). “Regression models”. In: Regression. Springer, pp. 21–72.; Fik, T. J., D. C. Ling, and G. F. Mulligan (2003). “Modeling spatial variation in housing prices: a variable interaction approach”. In: Real Estate Economics 31.4, pp. 623–646.; Florencio, L., F. Cribari-Neto, and R. Ospina (2012). “Real estate appraisal of land lots using GAMLSS models”. In: Chilean Journal of Statistics (ChJS) 3.1, pp. 75–91.; Housing, Ministry of (2011). LEY 1450 DE 2011. URL: http://www.minvivienda.gov. co/NormativaInstitucional/1450%20-%202011.pdf (visited on 03/11/2020).; IAAO (2017). “Standard on Mass Appraisal of Real Property”. In: Kullback, Solomon and Richard A Leibler (1951). “On information and sufficiency”. In: The annals of mathematical statistics 22.1, pp. 79–86; Lin, C. C. and S. B. Mohan (2011). “Effectiveness comparison of the residential property mass appraisal methodologies in the USA”. In: International Journal of Housing Markets and Analysis.; Marra, G. and R. Radice (2020). GJRM: Generalised Joint Regression Modelling. R package version 0.2-2. URL: https://CRAN.R-project.org/package=GJRM; Mayer, M., S. C. Bourassa, M. Hoesli, and D. Scognamiglio (2019). “Estimation and updating methods for hedonic valuation”. In: Journal of European Real Estate Research; Nelder, J. A. and R. W. M. Wedderburn (1972). “Generalized linear models”. In: Journal of the Royal Statistical Society: Series A (General) 135.3, pp. 370–384.; Paradis, E. and K. Schliep (2019). “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R”. In: Bioinformatics 35, pp. 526–528.; R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: http://www.R-project.org/.; Razen, A., W. Brunauer, N. Klein, S. Lang, and N. Umlauf (2015). “Hedonic house price modeling based on multilevel structured additive regression”. In: Computational Approaches for Urban Environments. Springer, pp. 97–122.; Rigby, R. A. and D. M. Stasinopoulos (1996). “Mean and dispersion additive models”. In: Statistical theory and computational aspects of smoothing. Springer, pp. 215–230. — (2005). “Generalized additive models for location, scale and shape”. In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.3, pp. 507–554.; Ruiz, F. and G. Vallejo (2010). “Using land registration as a tool to generate municipal revenue: Lessons from Bogota”. In: World Bank, Washington, DC.; Särndal, C., B. Swensson, and J.Wretman (2003). Model assisted survey sampling. Springer Science & Business Media; Stasinopoulos, D. M., R. A. Rigby, G. Z. Heller, V. Voudouris, and F. De Bastiani (2017). Flexible regression and smoothing: using GAMLSS in R. CRC Press.; UAECD (2019). Informe de Gestión. Plan de Acción Proyectos de Inversión 2019. URL: http: //www.catastrobogota.gov.co/sites/default/files/archivos/planeacion/ Informe%20de%20Gesti%C3%B3n%20Plan%20de%20Acci%C3%B3n%20Proyectos% 20de%20Inversi%C3%B3n%202019.pdf (visited on 03/10/2020).; Wang, D. and V. J. Li (2019). “Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review”. In: Sustainability 11.24, p. 7006; Wood, S. N. (2003). “Thin plate regression splines”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65.1, pp. 95–114. — (2017). Generalized additive models: an introduction with R. CRC press.; HAGER, H AND BAIN, L, Inferential procedures for the generalized gamma distribution, Journal of the American Statistical Association, 65, 1601-1609, 1970.; LAWLESS, J., Inference in the generalized gamma and log-gamma distributions. Technometrics, 22, 409-419, 1980; SÄRNDAL, C.E. AND SWENSSON, B. AND WRETMAN, J., Model Assisted Survey Sampling, Springer, 2003.; RONDON, L. M. AND VANEGAS, L. H. AND FERRAZ, C., Finite population estimation under generalized linear model assistance., Computational Statistics and Data Analysis, 56, 3, 680-697, 2012; BREIDT, F.J. AND OPSOMER, J.D., Local polynomial regression estimators in survey sampling, Annals of Statistics, 28, 7, 1026-1053, 2001.; CARDOZO, C.A. AND PAULA, G.A. AND VANEGAS, L., sglg: Fitting Semi- Parametric Generalized log-Gamma Regression Models, http://CRAN.R-project.org/ package=sglg, 2021; R FOUNDATION FOR STATISTICAL COMPUTING, A Language and Environment for Statistical Computing, https://www.R-project.org/, 2021.; STASINOPOULOS, M. AND RIGBY, B. AND VOUDOURIS, V. AND AKANTZILIOTOU, C. AND ENEA, M. AND KIOSE, D., gamlss: Generalised Additive Models for Location Scale and Shape, https://CRAN.R-project.org/package= gamlss, 2021.; CARDOZO, C.A. AND ALONSO, C.,, sregsurvey: Semiparametric Model-Assisted Estimation in Finite Populations., http://CRAN.R-project.org/package=sregsurvey, 2021.; CARDOZO, C.A. AND PAULA, G.A. AND VANEGAS, L., Generalized log-gamma semiparametric models with P-spline smoothing., Submitted, 2021; LUMLEY, T., survey: analysis of complex survey samples., http://CRAN.R-project. org/package=survey, 2021; G Andrade, G. Ramalho, H. Santana, and V. Corruble. Extending reinforcement learning to provide dynamic game balancing. In Proceedings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning in Computer Games, page 5, Edinburgh, Scotland, July 2005.; M. V. Aponte, G. Levieux, and S. Natkin. Difficulty in videogames : An experimental validation of a formal definition. In ACE ’11: Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology, page 49, Lisbon, Portugal, November 2011.; C. Crawford. Design techniques and ideal for computer games. Byte Magazine, 7(12):96– 108, 1982.; M. S. Csikszentmihalyi. Flow: The Psychology of Optimal Experience. HarperCollins, New York, NY, second edition, 2008; Debi Gartland and Roberta Strosnider. Learning disabilities: Implications for policy regarding research and practice: A report by the national joint committee on learning disabilities. Learning Disability Quarterly, 41(4):195–199, 2018; R. Hunicke and V. Chapman. Ai for dynamic difficulty adjustment in games. 2004.; A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange. Unity: A general platform for intelligent agents. CoRR, abs/1809.02627, 2018; R. Martey, K. Kenski, J. Folkestad, E. Gordis, L. Feldman, H. Zhang, T. Kaufmann, A. Rabkin, A. Shaw, J. Stromer-Galley, B. Clegg, S. Shaikh, and T. Strzalkowski. Measuring game engagement. Simulation Gaming: An Interdisciplinary Journal of Theory, Practice and Research, 11 2014.; H. Moon and J. Seo. Dynamic difficulty adjustment via fast user adaptation. 2020.; A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.; D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by selfsupervised prediction. In ICML, 2017; Joshua Rothman. Video games that embrace irony and death. urlhttps://www.newyorker.com/culture/culture-desk/video-games-that-embrace-ironyand- death, 2014.; J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. page 12, 07 2017; M. Shakhova and A. Zagarskikh. Dynamic difficulty adjustment with a simplification ability using neuroevolution. Procedia Computer Science, 156:395–403, 01 2019.; J. L. González Sánchez, N. Padilla Zea, F. L. Gutiérrez, and M. J. Cabrera. De la usabilidad a la jugabilidad: Diseño de videojuegos centrado en el jugador. 2008.; R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, Cambridge, MA, second edition, 2018; Mohammad Zohaid. Dynamic difficulty adjustment (dda) in computer games: A review. Advances In Human-Computer Interaction, 2018:1–12, 11 2018; DRAY, S., SAID, S., DÉBIAS, F., Spatial ordination of vegetation data using a generalization of Wartenberg’s multivariate spatial correlation. Applied Vegetation Science, Vol. 19(1), 45-56, 2008.; GAVIOLI, A., DE SOUZA, E. G., BAZZI, C. L., GUEDES, L. P. C., SCHENATTO, K., Optimization of management zone delineation by using spatial principal components. Computers and Electronics in Agriculture, Vol. 127, 302-310, 2016.; WARRICK, A. W., NIELSEN, D. R., Spatial variability of soil physical properties in the field. Spatial variability of soil physical properties in the field., 319-344, 1980; Abascal. E. Fernandez, K. Calvo, I. Técnicas factoriales de análisis de tablas múltiples: Nuevos desarrollos empíricos.; Abdi, H., Williams, L. J., Valentin, D., y Bennani-Dosse, M. (2012). STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2):124-167.; Becerra, M. (2010). Comparación del análisis factorial múltiple (AFM) y del análisis en componentes principales para datos cualitativos (Prinqual), en la construcción de índices. Universidad Nacional de Colombia.; Corzo. J. (2003). Análisis Multivariado Aplicado con aplicaciones en R. Notas de clase. Universidad Nacional de Colombia. Departamento de Estadística; Corzo. J. (2017). Análisis factorial múltiple para clasificación de universidades latinoamericanas. Comunicaciones en Estadística. Junio 2017, Vol. 10, No. 1, pp. 57-82; Gonzalez, J. Rodriguez, O. Algoritmo de implementación del método STATIS; Lavit, C., Escoufier, Y., Sabatier, R., y Traissac, P. (1994). The ACT (STATIS method). Computational Statistics and Data Analysis, 18(1):97-119.; López, E. (2012). Cómo se cocinan los rankings universitarios. Dendra Médica. Revista de Humanidades 2012; 11(1):43-58.; Martinez Rizo, F. (2011). Los rankings de universidades: una visión crítica. Revista de la educación superior XL(I)(157). Pág. 77-97.; Orduña, E. (2011). Propuesta de un modelo de análisis redinformétrico multinivel para el estudio sistémico de las universidades españolas (2010) [tesis]. Valencia: Universidad Politécnica de Valencia; 2012.; Pinzón, Luz. (2011). BIPLOT CONSENSO PARA ANÁLISIS DE TABLAS MÚLTIPLES. Universidad de Salamanca. Departamento de Estadística. Trabajo de grado, doctorado.; Roberts, D.; Thomson, L. (2007). Reputation management for universities: university league tables and the impact on student recruitment. Leeds, UK: The Knowledge partnership.; Salmi, Jamil (2007a). “League tables as policy instruments: uses and misuses”. En: Higher education management and policy, v. 19, n. 2, 24p.; Siwinski, Waldemar (2005). "Perpektywy- Ten years of rankings". En: Higher education in Europe, v. 27, n. 4, pp. 399-406; Zingaretti, M. L., Demey-Zambrano, J. A., Vicente-Villardon, J. L., y Demey, J. R. (2015). kimod: A k-tables approach to integrate multiple Omics-Data. R package version 0.99.5.; AMAYA, J, Gestión del riesgo sísmico en Medellín, http://bdigital.unal.edu.co/ 6595/1/79597260.15052012.pdf Es, 2012; CÁRDENAS, C., GARZÓN Y., SANTA, L. & CASTILLO, L., Modelo de Poisson para la ocurrencia y magnitud espacio temporal de los sismos en Colombia. http://revistas.udistrital.edu.co/ojs/index.php/UDGeo/article/view/ 3655/5257 UD y la Geomática, 4, 28-43.; COLES, S., An introduction to statistical modeling of extreme values. Springer Series in Statistics, 2001; COMITÉ AIS-300, Amenaza Sísmica. Estudio general de amenaza sísmica de Colombia de Colombia de 2009 Asociación Colombiana de Ingeniería Sísmica, 2010; CORNELL, C. A., Bulletin of the Seismological Society of America 58(5), 1583-1606, 1968; MUÑOZ, D., Conceptos básicos en riesgo sísmico Conceptos básicos del riesgo sísmico (Issue 1, pp. 199-216) Física de la Tierra, Ed. Universidad Complutense de Madrid, 1989.; LUNDBERG, S. , An introduction to explainable AI with Shapley values, https://shap.readthedocs.io, 2018; MENG Y, YANG N, QIAN Z, ZHANG G, What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. Journal of Theoretical and Applied Electronic Commerce Research. 2021 Jun;16(3):466-90; MOLNAR, C., Interpretable machine learning. lulu.com, 2020; ZHANG, X.D. , Machine learning. A Matrix Algebra Approach to Artificial Intelligence, Springer, 2020; ANDERSEN, P. K. AND GILL, R. D., Cox’s regression model for counting processes: a large sample study, The Annals of Statistics, Vol. 10(4), 1100-1120, 1982; BENDER, R. AND AUGUSTIN, T. AND BLETTNER, M., Generating survival times to simulate Cox proportional hazards models, Statistics in medicine, Vol. 24(11), 1713-1723, 2005.; GARCÍA, J. J., Análisis de supervivencia aplicado al estudio de la mortalidad en injertos de inchi (Caryodendron orinocense Karsten), Vol. 12(4), 759-769, 2012; COX, D. R., Regression Models and Life-Tables, Journal of the Royal Statistical Society. Series B, Vol. 34(2), 187-220, 1972; R DEVELOPMENT CORE TEAM, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL: http://www.Rproject. org/, 2021; LAWLESS, J., Statistical Models and Methods for Lifetime data, 2nd ed., John Wiley & Sons, Inc., 2003; ZHAN, L. AND CHEN, G., EWMA charts for monitoring the mean of censored Weibull lifetimes. Journal of Quality Technology, 36, 321-328, 2004; DICKINSON, R. M., OLTEANU-ROBERTS, D. A., RYAN, A. G., WOODALL, W. H. AND VINIING, G. G., CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes. Journal of Quality Technology, 46(4), 340-358, 2014; Almetwally, E. M., Muhammed, H. Z., and El-Sherpieny, E.-S. A. (2020). Bivariate weibull distribution: properties and different methods of estimation. Annals of Data Science, 7(1):163– 193.; Cook, D. O., Kieschnick, R., and McCullough, B. D. (2008). Regression analysis of proportions in finance with self selection. Journal of empirical finance, 15(5):860–867.; Corzo, O. and Bracho, N. (2008). Application of weibull distribution model to describe the vacuum pulse osmotic dehydration of sardine sheets. LWT-Food Science and Technology, 41(6):1108–1115; Dürr, J., Monardes, E., and Cue, R. (1999). Genetic analysis of herd life in quebec holsteins using weibull models. Journal of Dairy Science, 82(11):2503–2513.; Fok, S., Mitchell, B., Smart, J., and Marsden, B. (2001). A numerical study on the application of the weibull theory to brittle materials. Engineering Fracture Mechanics, 68(10):1171–1179.; Gupta, A. K. and Nadarajah, S. (2004). Handbook of beta distribution and its applications. CRC press.; Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of hydrology, 46(1-2):79–88; Liu, C., Aengenheister, S., Herzog, S., Deng, Y., Kaletsch, A., Schmitz, K., and Broeckmann, C. (2021). Application of weibull theory to laser surface textured al2o3. Journal of the European Ceramic Society, 41(2):1415–1426.; Martinez-Florez, G., Bolfarine, H., and Gomez, H. W. (2015). Doubly censored power-normal regression models with inflation. Test, 24(2):265–286.; Mazucheli, J., Menezes, A., and Dey, S. (2018a). The unit-birnbaum-saunders distribution with applications. Chilean Journal of Statistics, 9(1):47–57.; Mazucheli, J., Menezes, A., and Ghitany, M. (2018b). The unit-weibull distribution and associated inference. J. Appl. Probab. Stat, 13:1–22.; Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.; Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 9(6):449–460.; Xu, M., Herrmann, J. W., and Droguett, E. L. (2021). Modeling dependent series systems with q-weibull distribution and clayton copula. Applied Mathematical Modelling, 94:117–138.; Yeh, H.-C. (2009). Multivariate semi-weibull distributions. Journal of multivariate analysis, 100(8):1634–1644.; Zhang, C. W. (2021). Weibull parameter estimation and reliability analysis with zero-failure data from high-quality products. Reliability Engineering & System Safety, 207:107321.; Adler, N. & Golany, B. (2002). Including principal component weights to improve discrimination in data envelopment analysis. Journal of the Operational Research Society, 53(9), 985–991.; Bogetoft, P. & Otto, L. (2020). Benchmarking with DEA and SFA. R package version 0.29; Charles, V., Aparicio, J., & Zhu, J. (2019). The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis. European Journal of Operational Research, 279(3), 929–940.; Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.; Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: Prior to choosing a model. Omega, 44, 1–4.; Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software, volume 2. Springer.; Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls and protocols in dea. European Journal of operational research, 132(2), 245–259.; Fontalvo Herrera, T. J. (2017). Eficiencia de las entidades prestadoras de salud (eps) en colombia por medio de análisis envolvente de datos. Ingeniare. Revista chilena de ingeniería, 25(4), 681–692.; Jenkins, L. & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, 147(1), 51–61; R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; ARNOLD, B. C., GÓMEZ, H. W. Y SALINAS, H. S. On multiple constraint skewed models, Statistics, 43(3), 279-293. 2009.; BOLFARINE, H. MARTÍNEZ-FLÓREZ, G Y SALINAS, H. S. Bimodal symmetricasymmetric power-normal families, Communications in Statistics-Theory and Methods, 47(2), 259-276. 2013.; BOX, G. E. Y COX, D. R. An analysis of transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. 1964; CORONADO RAMÍREZ, S. Y GATICA ARREOLA, L. Problemas de asimetría para el análisis y la predictibilidad del tipo de cambio mexicano, EconoQuantum, 10(1), 77-89. 2013.; ELAL-OLIVERO, DAVID. Alpha-skew-normal distribution, Proyecciones (Antofagasta), 29(3), 224–240. 2010; ELAL-OLIVERO, D. GÓMEZ, H. W Y QUINTANA, F. A. Bayesian modeling using a class of bimodal skew-elliptical distributions, Journal of Statistical Planning and Inference, 139(4), 1484–1492. 2009; GÓMEZ, H.W., ELAL-OLIVERO, D.,SALINAS, H.S Y BOLFARINE, H. Bimodal extension based on the skew-normal distribution with application to pollen data, Environmetrics, 22(1), 50–62. 2011.; GURKA, M. J., EDWARDS, L. J., MULLER, K. E. Y KUPPER, L. L. Extending the Box– Cox transformation to the linear mixed model,Journal of agricultural, biological, and environmental statistics, 169(2), 273-288. 2006; KIM, H. J. On a class of two-piece skew-normal distributions, Statistics, 39(6), 537-553. 2005; MARTÍNEZ-FLÓREZ, G., PACHECO-LÓPEZ, M. Y TOVAR-FALÓN, R. Likelihoo-Based Inference for the Asymmetric Bimodal Power-Normal Model, Revista Colombiana de Estadística. (sometido) 2021; PIEPHO, H.-P Y MCCULLOCH, C. E. Transformations in mixed models: Application to risk analysis for a multienvironment trial,Journal of agricultural, biological, and environmental statistics, 9(1), 123-137. 2004; Mosquera, J., Control estadístico de variables cuantitativas mediante inspección por atributos apoyada en el diseño de galgas con dimensiones óptimas., Doctorado, Universidad Politécnica de Valencia, Valencia, España, 2019; Mosquera, J., F. Aparisi, and E. K. Epprecht, A global scheme for controlling the mean and standard deviation of a process based on the optimal design of gauges, Quality and Reliability Engineering International, 34(5), 718–730, doi:10.1002/qre.2282, 2018a.; Mosquera, J., F. Aparisi, and E. K. Epprecht, A global scheme for controlling the mean and standard deviation of a process based on the optimal design of gauges, Quality and Reliability Engineering International, 34(5), 718–730, 2018b.; Steiner, S. H., P. Lee Geyer, and G. O.Wesolowsky, Shewhart control charts to detect mean and standard deviation shifts based on grouped data, Quality and reliability engineering international, 12(5), 345–353, 1996.; Stevens, W. L., Control by gauging, Journal of the Royal Statistical Society: Series B (Methodological), 10(1), 54–98, doi:10.1111/j.2517-6161.1948.tb00003.x, 1948.; Sistema de Informaci´on Geogr´afico para el Mejoramiento de la Gesti´on Ap´ıcola. (2007). Proyecto de Innovaci´on en la Regi´on del Maule. Serie Experiencias de Innovaci´on para el Emprendimiento Agrario; FAO. (2019). Producci´on de Cera de abeja en Mundo. Organizaci´on de las Naciones Unidas para la Alimentaci´on y la Africultura. Obtenido de http://www.fao.org/faostat/ es/#data/QL/visualize; Garc´ıa, M., R´ıos, L., & ´Alvarez, J. (2016). La polinizaci´on en los sistemas de producci´on agr´ıcola: revisi´on sistem´atica de la literatura. IDESIA. Obtenido de https://scielo. conicyt.cl/pdf/idesia/v34n3/art08.pdf; Pueyo, A. (1991). El sistema de informaci´on geografica: Un instrumento para la planificaci ´on y gestion urbana. Geographicalia. Obtenido de file:///C:/Users/JENIFER% 20TOVIO/Downloads/Dialnet-ElSistemaDeInformacionGeografica-59785%20(1) .pdf; Vec´ın, J. R. (2019). Sistema de informaci´on geogr´afica para la gestion de las explotaciones ap´ıcolas en la provincia de Le´on.; Cabilio, P. & Masaro, J. (1996), ‘A simple test of symmetry about an unknown median’, The Canadian Journal of Statistics 24(3), 349–361.; Corzo, J. A., Vergara, M. E. & Babativa, G. (2017), ‘Una prueba de rachas para la alternativa estocásticamente mayor que en muestras de la distribución lognormal’, Comunicaciones en Estadística 10(2), 297–314.; Corzo, J. & Babativa, G. (2013), ‘A modified runs test for symmetry’, Journal of Statistical Computation and Simulation 83(5), 984–991.; Corzo_Salamanca, J. A., Vergara_Morales, M. E. & Babativa-Márquez, J. G. (2019), ‘A runs test for the hypothesis of symmetry with one sided alternative’, Universitas Scientiarum 24(2), 295–305.; Miao, W., Gel, Y. & Gastwirth, J. (2006), ‘A new test of symmetry about an unknown median’, Random Walk, Sequential Analysis and Related Topics - A Festschrift in Honor of Yuan-Shih Chow. Eds.: Agnes Hsiung, Cun-Hui Zhang, and Zhiliang Ying, World Scientific Publishe pp. 1–19.; Mira, A. (1999), ‘Distribution-free test for symmetry based on Bonferroni’s measure’, Journal of Applied Statistics 26(8), 959–972; Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A. R., Shcherbakova, O., Amlie-Wolf, A., Nie, J., Cui, X. et al. (2020), ‘An integrated multi-omics approach identifies epigenetic alterations associated with alzheimer disease’, Nature genetics 52(10), 1024– 1035.; Niño, J. (n.d.), Análisis diferencial de genes utilizando el método SAM. Taller Estadística Genómica.; Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Chapman and Hall/CRC, Boca Raton, first edition; Davis, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements. Springer, New York, first edition; De’ath, G. (2002). Multivariate regression trees: a new technique for modeling speciesenvironment relationships. Ecology, 83:1105–1117.; Hajjem, A., Bellavance, F., and Larocque, D. (2008). Mixed-effects regression trees for clustered data. Les Cahiers du GERAD, G-2008-57.; Hajjem, A., Bellavance, F., and Larocque, D. (2011). Mixed effects regression trees for clustered data. Statistics and Probability Letters, 81:451–459; Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York, first edition.; Hsiao, W. C. and Shih, Y. S. (2007). Splitting variable selection for multivariate regression trees. Statistics and Probability Letters, 77:265–271.; Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38:963–974.; Larsen, D. R. and Speckman, P. L. (2004). Multivariate regression trees for analysis of abundance data. Biometrics, 60:543–549; Lee, S. K. (2006). On classification and regression trees for multiple responses and its application. Journal of Classification, 23:123–141; Lee, S. K., Kang, H. C., T., H. S., and Kim, K. H. (2005). Using generalized estimating equations lo learn decision trees with multivariate responses. Data Mining and Knowledge Discovery, 11:273–293; Loh, W. Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, 12:361–386.; Pande, A., Li, L., Rajeswaran, J., Ehrlinger, J., Kogalur, U. B., Blackstone, E. H., and Ishwaran, H. (2017). Boosted multivariate trees for longitudinal data. Machine Learning, 106:277–305.; Pinheiro, J., Bates, D., S., D., Sarkar, D., and Team, R. C. (2021). nlme: Linear and Nonlinear Mixed Effects Models. R Package. R Foundation for Statistical Computing, Vienna, Austria.; Posada, J. J. (2012). Efecto de la cantidad de carga en el consumo de combustible en camiones. Tesis de doctorado en ingeniería, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín; R, D. C. T. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.; Segal, M. R. (1992). Tree-structured models for longitudinal data. Journal of the American Statistical Association, 87:407–418; Sela, R., Simonoff, J., and Jing, W. (2021). REEMtree: Regression Trees with Random Effects for Longitudinal (Panel). R Package. R Foundation for Statistical Computing, Vienna, Austria.; Sela, R. J. and Simonoff, J. S. (2009). Re-em trees: a new data mining approach for longitudinal data. NYU Stern Working Paper, SOR-2009-03.; Sela, R. J. and Simonoff, J. S. (2012). Re-em trees: a data mining approach for longitudinal and clustered data. Machine Learning, 86:169–207.; Therneau, T. M. and Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R Package. R Foundation for Statistical Computing, Vienna, Austria.; Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer, New York, first edition.; John AD Aston and Claudia Kirch. Estimation of the distribution of change-points with appliction to fmri data. 2011.; István Berkes, Robertas Gabrys, Lajos Horváth, and Piotr Kokoszka. Detecting changes in the mean of functional observations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(5):927–946, 2009; José Ramón Berrendero, Ana Justel, and Marcela Svarc. Principal components for multivariate functional data. Computational Statistics & Data Analysis, 55(9):2619–2634, 2011.; Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.; LA Gardner. On detecting changes in the mean of normal variates. The Annals of Mathematical Statistics, 40(1):116–126, 1969; Douglas M Hawkins, Peihua Qiu, and Chang Wook Kang. The changepoint model for statistical process control. Journal of quality technology, 35(4):355–366, 2003.; Nikolai Helwig, Eliseo Pignanelli, and Andreas Schütze. Condition monitoring of a complex hydraulic system using multivariate statistics. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pages 210–215. IEEE, 2015.; J Kiefer. K-sample analogues of the kolmogorov-smirnov and cramér-v. mises tests. The Annals of Mathematical Statistics, pages 420–447, 1959; D.A. Latorre. Code change point for mfda thesis. https://github.com/dalatorrem/ code_tesis_PCMFD.git, 2019; Darío Latorre and Rubén Guevara. Detección de puntos de cambio para datos funcionales multivariados. 2021.; Tze-San Lee. Change-point problems: bibliography and review. Journal of Statistical Theory and Practice, 4(4):643–662, 2010; ES Page. A test for a change in a parameter occurring at an unknown point. Biometrika, 42(3/4):523–527, 1955.; Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.; Paul J Plummer and Jie Chen. A bayesian approach for locating change points in a compound poisson process with application to detecting dna copy number variations. Journal of Applied Statistics, 41(2):423–438, 2014; James O Ramsay. Functional data analysis. Encyclopedia of Statistical Sciences, 4, 2004; Ashish K Sen and Muni S Srivastava. On multivariate tests for detecting change in mean. Sankhy¯a: The Indian Journal of Statistics, Series A, pages 173–186, 1973; KD Zamba and Douglas M Hawkins. A multivariate change-point model for change in mean vector and/or covariance structure. Journal of Quality Technology, 41(3):285–303, 2009.; Fransisco Zamora-Martinez, Pablo Romeu, Pablo Botella-Rocamora, and Juan Pardo. Online learning of indoor temperature forecasting models towards energy efficiency. Energy and Buildings, 83:162–172, 2014; ANSELIN, L., Spatial econometrics. A companion to theoretical econometrics, ed. Baltagi, Oxford: Basil Blackwell; pp. 310-330, 2001; CHASCO, C., Modelos de heterogeneidad espacial. Universidad Autónoma de Madrid., 2004; DANE, Estadísticas vitales - eevv. Cifras definitivas año 2018. Bogotá, Colombia., 2019; ESPIN, J. GONZÁLEZ, M., Acerca de la covid-19 como un importante problema para la salud pública y la humanidad. In I Congreso Virtual de Ciencias Básicas Biomédicas de Granma., 2020.; FÁTIMA DE PINA, M., FERREIRA, S., CORREIA, A., CASTRO, A., Epidemiología espacial: nuevos enfoques para viejas preguntas., 2010.; LAWSON, A., WILLIAMS, F., An Introductory Guide to Disease Mapping., 2001.; RUIZ, M., Mapeo de enfermedades con enfoques bayesianos y evaluación del riesgo relativo para la salud pública en Colombia. Universidad Distrital Francisco José de Caldas. Bogotá, Colombia, 2020.; TOWNSEND, A., Mapping Disease Transmission Risk. Enriching Models Using Biogeography and Ecology. Johns Hopkins University press Baltimore., 2014; [Ferraty and Vieu, 2006] Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice. Springer Science & Business Media.; [Frozza, 2010] Frozza, M. (2010). Introdução à análise descritiva de dados funcionais.; [Horváth and Kokoszka, 2012] Horváth, L. and Kokoszka, P. (2012). Inference for functional data with applications, volume 200. Springer Science & Business Media.; [Ortiz Másmela, 2020] Ortiz Másmela, A. M. (2020). Modelo de datos funcionales para la caracterización de la propagación de una epidemia; BOSQ, D., ILinear Processes in Function Spaces Theory and Applications. Springer, 2020.; HORVÁTH, L., KOKOSZKA, P. AND RICE, G. , “TESTING STATIONARITY OF FUNCTIONAL TIME SERIES", Journal of Econometrics, Vol. 179(1), pp. 66-82, 2014.; HYNDMAN, R. J. AND SHAHID ULLAH, M., “ROBUST FORECASTING OF MORTALITY AND FERTILITY RATES: A FUNCTIONAL DATA APPROACH", Computational Statistics and Data Analysis, Vol. 51(10), pp. 4942–4956, 2007.; KOKOSZKA, P. AND REIMHERR, M., Introduction to functional data analysis. CRC Press, 2017; MALEKI, M. R., AMIRI, A. AND CASTAGLIOLA, P., “AN OVERVIEW ON RECENT PROFILE MONITORING PAPERS (2008–2018) BASED ON CONCEPTUAL CLASSIFICATION SCHEME", Computers and Industrial Engineering, Vol. 126, pp. 705–728, 2018.; MONTGOMERY, D., Introduction to statistical quality control, Third Edition., Jhon Wiley and Sons, 2013; NOOROSSANA, R., AND VAGHEFI, S., “EFFECT OF AUTOCORRELATION ON PERFORMANCE OF THE MCUSUM CONTROL CHART", Statistical Methods for Quality Improvement, Vol. 22, pp. 473-480, 2006.; RAMSAY, J. AND SILVERMAN, B. W., Functional Data Analysis, Springer Series in Statistics, 2005; RAYAN, T.P., Statistical Methods for Quality Improvement, Third Edition., John Wiley and Sons, 2011; STEINER, S., JENSEN, W. A., GRIMSHAW, S. D. AND ESPEN, B., “PNONLINEAR PROFILE MONITORING FOR OVEN-TEMPERATURE DATA", Journal of Quality Technology, Vol. 48(1), pp. 84-97, 2016; SHEU, S. H., OUYOUNG, C. W. AND HSU, T. S., “PHASE II STATISTICAL PROCESS CONTROL FOR FUNCTIONAL DATA", Journal of Statistical Computation and Simulation, Vol. 83(11), pp. 2144–2159, 2013; Woodall, W. H., “CURRENT RESEARCH ON PROFILE MONITORING", Producao, Vol. 17(3), pp. 420-425, 2007; ZHANG, N. , “A STATISTICAL CONTROL CHART FOR STATIONARY PROCESS DATA", Technometrics , Vol. 40(1), pp. 24–39, 1998; “PHASE I ANALYSIS OF MULTIVARIATE PROFILES BASED ON REGRESSION ADJUSTMENT", Computers and Industrial Engineering, Vol. 85, pp. 132– 144, 2015.; Israels, A. Z. (1984). Redundancy analysis for qualitative variables. Psychometrika, 49, 331-346.; Israels, A. Z. (1987). Eigenvalue techniques for qualitative data. DSWO Press, Leiden.; Lavit, C. (1985). Application de la méthode statis. Statistique et Analyse des Données, Vol 10, n.1.; Legendre, P., Legendre, L. (1998). Numerical Ecology. 2nd ed. Elsevier; Stewart, D., Love,W. (1968). A general canonical correlation index. Psychological Bulletin, 70, 160-163; ten Berge, J. M. F. (1985). On the relationship between Fortier’s simultaneous linear prediction and Van den Wollenberg’s redundancy analysis. Psychometrika, 50, 121 - 122.; ter Braak, C. (1994). Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience, vol 1, n.2, 127-140; Wollenberg A. L. (1977). Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika, Vol. 42, no. 2; Agostinelli, C., Leung, A., Yohai, V. J., and Zamar, R. H. (2015), “Robust Estimation of Multivariate Location and Scatter in the Presence of Cellwise and Casewise Contamination,” TEST, 24, 441 – 461; Boudt, K., Rousseeuw, P. J., Vanduffel, S., and Verdonck, T. (2020), “The Minimum Regularized Covariance Determinant Estimator,” Statistics and Computing, 30, 113 – 128.; Cabana, E., Lillo, R. E., and Laniado, H. (2019), “Multivariate Outlier Detection Based on a Robust Mahalanobis Distance with Shrinkage Estimators,” Statistical Papers.; Davis, C. M. and Adams, B. M. (2005), “Robust Monitoring of Contaminated Data,” Journal of Quality Technology, 37, 163 – 174; Donoho, D. (1982), “Breakdown Properties of Multivariate Location Estimators,” Technical report, Harvard University, Boston; Falk, M. (1997), “On Mad and Comedians,” Annals of the Institute of Statistical Mathematics, 49, 615 – 644.; Filzmoser, P. (2005), “Identification of Multivariate Outliers: A Performance Study,” Austrian Journal of Statistics, 34, 127 – 138.; Galeano, P., Peña, D., and Tsay, R. (2006), “Outlier Detection in Multivariate Time Series by Projection Pursuit,” Journal of the American Statistical Association, 101, 654 – 669; Hubert, M. and Van der Veeken, S. (2008), “Outlier Detection for Skewed Data,” Journal of Chemometrics, 22, 235 – 246; Kunjunni, S. O. and Sajesh, T. A. (2020), “Sn Covariance,” Communications in Statistics - Theory and Methods, 49, 6133 – 6138; Leung, A., Zhang, H., and Zamar, R. H. (2016), “Robust Regression Estimation and Inference in the Presence of Cellwise and Casewise Contamination,” Computational Statistics & Data Analysis, 99, 1 – 11; Maronna, R. A. and Zamar, R. H. (2002), “Robust Estimates of Location and Dispersion for High-Dimensional Datasets,” Technometrics, 44, 307 – 317.; Navarro-Esteban, P. and Cuesta-Albertos, J. A. (2021), “High-Dimensional Outlier Detection Using Random Projections,” TEST.; Olive, D. J. (2004), “A Resistant Estimator of Multivariate Location and Dispersion,” Computational Statistics & Data Analysis, 46, 93 – 102.; Peña, D. and Prieto, F. J. (2001), “Multivariate Outlier Detection and Robust Covariance Matrix Estimation,” Technometrics, 43, 286 – 300.; — (2007), “Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariate Data,” Journal of Computational & Graphical Statistics, 16, 228 – 254; Pinzón, M. A., Ortiz, S., Holguín, H., Betancur, J. F., Cardona Arango, D., Laniado, H., Arias Arias, C., Muñoz, B., Quiceno, J., Jaramillo, D., and Ramirez, Z. (2021), “Dexamethasone vs Methylprednisolone High Dose for Covid-19 Pneumonia,” PLOS ONE, 16, 1 – 13; Ro, K., Zou, C., Wang, Z., and Yin, G. (2015), “Outlier Detection for High-Dimensional Data,” Biometrika, 102, 589 – 599; Rocke, D. M. (1989), “Robust Control Charts,” Technometrics, 31, 173 – 184.; Rocke, D. M. and Woodruff, D. L. (1996), “Identification of Outliers in Multivariate Data,” Journal of the American Statistical Association, 91, 1047 – 1061.; Rousseeuw, P. J. and Croux, C. (1993), “Alternatives to the Median Absolute Deviation,” Journal of the American Statistical Association, 88, 1273 – 1283; Rousseeuw, P. J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum Covariance Determinant Estimator,” Technometrics, 41, 212 – 223.; Stahel, W. A. (1981), Robuste Schatzungen: Infinitesimale Optimalitat und Schatzungen von Kovarianzmatrizen, Ph.D. thesis, ETH, Zurich, Switzerland.; Tarr, G., Müller, S., and Weber, N. (2012), “A Robust Scale Estimator Based on Pairwise Means,” Journal of Nonparametric Statistics, 24, 187 – 199.; Alma, Ö. G. (2011), “Comparison of robust regression methods in linear regression,” Int. J. Contemp. Math. Sciences, 6, 409–421; Falk, M. (1997), “On Mad and Comedians,” Annals of the Institute of Statistical Mathematics, 49, 615 – 644; Filzmoser, P., Maronna, R., and Werner, M. (2008), “Outlier Identification in High Dimensions,” Computational Statistics & Data Analysis, 52, 1694 – 1711.; Jobe, J. M. and Pokojovy, M. (2015), “A Cluster-Based Outlier Detection Scheme for Multivariate Data,” Journal of the American Statistical Association, 110, 1543 – 1551; Kunjunni, S. O. and Sajesh, T. A. (2020), “Sn Covariance,” Communications in Statistics - Theory and Methods, 49, 6133 – 6138.; Liu, R. (1990), “On a Notion of Data Depth Based on Random Simplices,” The Annals of Statistics, 18, 405 – 414.; Liu, R., Parelius, J., and Singh, K. (1999), “Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference,” The Annals of Statistics, 27, 783 – 858; Nadaraya, E. A. (1964), “On estimating regression,” Theory of Probability & Its Applications, 9, 141–142.; Olive, D. J. (2004), “A Resistant Estimator of Multivariate Location and Dispersion,” Computational Statistics and Data Analysis, 46, 93 – 102.; Peña, D. and Prieto, F. J. (2001), “Multivariate Outlier Detection and Robust Covariance Matrix Estimation,” Technometrics, 43, 286 – 300; — (2007), “Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariate Data,” Journal of Computational and Graphical Statistics, 16, 228 – 254.; Rousseeuw, P. J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum Covariance Determinant Estimator,” Technometrics, 41, 212 – 223; Stahel, W. A. (1981), Robuste Schatzungen: Infinitesimale Optimalitat und Schatzungen von Kovarianzmatrizen, Ph.D. thesis, ETH, Zurich, Switzerland; Wasserman, L. (2006), All of nonparametric statistics, Springer Science & Business Media; Watson, G. S. (1964), “Smooth Regression Analysis,” Sankhy¯a: The Indian Journal of Statistics, Series A (1961-2002), 26, 359–372; Yatchew, A. (1998), “Nonparametric regression techniques in economics,” Journal of Economic Literature, 36, 669–721.; Zuo, Y. and Serfling, R. (2000), “General Notions of Statistical Depth Function,” The Annals of Statistics, 28, 461 – 482; C. T. Chen. Signal and Systems. Oxford University Press, 2004.; B. V. Gnedenko. Theory of Probability. Chelsea Publising Company, 1989.; A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to Theory of Statistics. McGraw Hill, 3 edition, 1974; A. Papoulis. Signal and Systems. McGraw Hill, 1984.; A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw Hill, 3 edition, 1991; Acevedo, K., Quejada, R., Yañez, M. (2011) Estudio transversal de los determinantes del trabajo infantil en Cartagena, año 2007. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud 2 (9), 589-606; Aparicio, S. (2013). Análisis intra-grupo sobre el trabajo infantil en Colombia: Un ejercicio cuanti y cualitativo. Instituto Colombiano de Bienestar Familiar, Bogotá, 46.; Aguirre, E. (2008). La percepción sobre el trabajo infantil de niñas, niños y padres de familia en sectores populares de la ciudad Bogotá, D.C. 6ª Reunión del Grupo de Trabajo Familia e Infancia de CLACSO, Familias latinoamericanas, pasado y presente: Continuidades, transiciones y rupturas.; Bernal, R., Cárdenas, M. (2007). Child labor in Colombia. NBER working paper, Universidad de Los Andes y Fedesarrollo; Briceño-Ayala, L., Pinzón, A. (2004). Efectos del trabajo infantil en la salud del menor trabajador. Revista de Salud Pública 6 (3), 270-288; Child-Soldiers-International. (2001). Child Soldiers Global Report 2001 - Colombia. Child Soldiers International; ICBF. (2013). Una doble mirada al trabajo infantil en Colombia. Observatorio del Bienestar de la Niñez, Instituto Colombiano de Bienestar Familiar.; Manacorda, M. (2006). Child Labor and the Labor Supply of Other Household Members. The American Economic Review 96 (5), 1788-1801.; OIT. (2004). Child labour. A textbook for university students. International Programme on the Elimination of Child Labour, International Labour Organization, Geneve, 307.; OIT. (2017). Estimaciones mundiales sobre el trabajo infantil. International Labour Organization; Palacio, J., Amar, J., Madariaga, C., Llinás, H., Contreras, K. (2007). La calidad de vida en salud en los menores trabajadores de Toluviejo (Sucre). Investigación y Desarrollo 15 (2), 366-393.; Pedraza, A., Ribero, R. (2005). Los determinantes del trabajo infanto-juvenil en Colombia. Coyuntura Social 33, 81-101.; Pinzón, A., Briceño, L., Gómez, A., Latorre, C. (2003). Trabajo infantil en las calles de Bogotá. Rev. Cienc. Salud 1 (2), 151-163; Santos, R. (2018). Blessing and curse. The gold boom and local development in Colombia. World Development 106, 337–355.; DALENIUS & HODGES, Minimum variance stratification, Journal of the American Statistical Association 54, 88–101. 1959; SÄRNDAL, S., BENGT, C. & WRETMAN, J., Model Assisted Survey Sampling, Springer- Verlag GmbH, 2003; SCHULZ, M. E., Hábitos de estudio, https://www.redalyc.org/pdf/4981/ 498154006024.pdf, 2008; SIEGEL., Nonparametric statistics for the behavioral sciences, https://www.semanticscholar.org/paper/ Nonparametric-statistics-for-the-behavioral-%2F-Siegel/ 943927a8d9e6c732ee3a8df99907244648e121ea, 1956.; SOLANO, R. B., Programa educativo de técnicas y hábitos de estudio para lograr aprendizajes sustentables en estudiantes de nuevo ingreso al nivel superior, Iberoamericana de Educación 76(2), 73–94. 2018; SISTEMA NACIONAL DE INFORMACIÓN DE LA EDUCACIÓN SUPERIOR-SNIES, Documento Metodológico, 2020; PAGÈS, J., & HUSSON, F., Multiple factor analysis: Presentation of the method using sensory data. Mathematical and statistical methods in food science and technology (2014): 87-102; Hastie, T., Tibshirani, R., Friedman, J. (2008, 30 septiembre). The elements of statistical learning - Data mining, inference, and prediction (Preface to the Second Edition). Springer Series in Statistics; Hernández, F., Mazo, M. (2020, 30 octubre). Modelos de regresion. github.https:// fhernanb.github.io/libro_regresion/index.html; Vallalta Rueda, J. F. (2021). CRISP-DM: una metodología para minería de datos en salud. health data miner.https://healthdataminer.com/data-mining/crisp-dm-una-metodologia-para-; Vallalta Rueda, J. F. (2021). CRISP-DM: una metodología para minería de datos en salud. health data miner.https://healthdataminer.com/data-mining/crisp-dm-una-metodologia-para-Malohlava, M., Candel, A. (2021, septiembre). Gradient Boosting Machine with H2O (A. Bartz, Ed.).https://www.h2o.ai/resources/; M. Kuhn y K. Johnson, Feature engineering and selection: A practical approach for predictive models. CRC Press, 2019.; A. Hern´andez-Blanco, B. Herrera-Flores, D. Tom´as y B. Navarro-Colorado, “A Systematic Review of Deep Learning Approaches to Educational Data Mining,” Complexity, vol. 2019, p´ag. 22, 2019, ISSN: 10990526. DOI:10.1155/2019/1306039; R. D. Reason, “Student variables that predict retention: Recent research and new developments,” NASPA journal, vol. 46, n.o 3, p´ags. 482-501, 2009; J. P. Bean, “Dropouts and turnover: The synthesis and test of a causal model of student attrition,” Research in Higher Education, vol. 12, n.o 2, p´ags. 155-187, 1980, ISSN: 1573- 188X. DOI:10.1007/BF00976194.; W. G. Spady, “Dropouts from higher education: An interdisciplinary review and synthesis,” Interchange, vol. 1, n.o 1, p´ags. 64-85, 1970, ISSN: 1573-1790. DOI: 10 . 1007 / BF02214313.; V. Tinto y J. Cullen, “Dropout in Higher Education: A Review and Theoretical Synthesis of Recent Research.,” 1973; J. Silva, A. Castro Sarmiento, N. Mar´ıa Santodomingo, N. M´arquez Blanco, W. Cadavid Basto, H. Hern´andez P, J. Navarro Beltr´an, J. de la Hoz Hern´andez y L. Romero, “Data mining to identify risk factors associated with university students dropout,” Communications in Computer and Information Science, vol. 1071, p´ags. 44-52, 2019. DOI:10.1007/978-981-32-9563-6_5.; S. A. Ahmed y S. I. Khan, “A machine learning approach to Predict the Engineering Students at risk of dropout and factors behind: Bangladesh Perspective,” en 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019, 2019. DOI:10.1109/ICCCNT45670.2019.8944511.; B. R. Cuji Chacha, W. L. Gavilanes L´opez, V. X. Vicente Guerrero y W. G. Villacis Villacis, “Student Dropout Model Based on Logistic Regression,” Communications in Computer and Information Science, vol. 1194 CCIS, p´ags. 321-333, 2020. DOI: 10 . 1007/978-3-030-42520-3_26.; P. Meedech, N. Iam-On y T. Boongoen, “Prediction of Student Dropout Using Personal Profile and Data Mining Approach,” en Intelligent and Evolutionary Systems, K. Lavangnananda, S. Phon-Amnuaisuk,W. Engchuan y J. H. Chan, eds., Cham: Springer International Publishing, 2016, p´ags. 143-155, ISBN: 978-3-319-27000-5. DOI:10.1007/978- 3-319-27000-5_12.; D. Vila, S. Cisneros, P. Granda, C. Ortega, M. Posso-Y´epez e I. Garc´ıa-Santill´an, “Detection of desertion patterns in university students using data mining techniques: A case study,” Communications in Computer and Information Science, vol. 895, p´ags. 420-429, 2019, ISSN: 18650929. DOI:10.1007/978-3-030-05532-5_31.; N. Fenton y J. Bieman, Software metrics: a rigorous and practical approach, 3.a ed. CRC press, 2014, p´ag. 618.; B. King y E. Minium, Statistical Reasoning in Psychology and Education. Wiley, 2003, ISBN: 9780471211877; M. Tomczak y E. Tomczak, “The need to report effect size estimates revisited. An overview of some recommended measures of effect size,” Trends in sport sciences, vol. 1, n.o 21, p´ags. 19-25, 2014; L. M. Rea y R. A. Parker, Designing and conducting survey research: A comprehensive guide. John Wiley & Sons, 2014.; Ministerio de Educaci´on Nacional de Colombia MEN, Sistema Nacional de Indicadores Educativos para los Niveles de Preescolar, B´asica y Media en Colombia, 2014.; A. Elbir, E. G¨und¨uz y B. Diri, “Estimating the School Dropout Trend by Using Data Mining Methods [Veri Madenciliˇgi Y¨ontemleri Kullanarak Okul Birakma Eˇgiliminin Tahmin Edilmesi],” en Proceedings - 2018 Innovations in Intelligent Systems and Applications Conference, ASYU 2018, 2018. DOI:10.1109/ASYU.2018.8554022; A. Serra, P. Perchinunno y M. Bilancia, “Predicting student dropouts in higher education using supervised classification algorithms,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10962 LNCS, p´ags. 18-33, 2018. DOI:10.1007/978-3-319-95168-3_2.; A. Sangodiah, P. Beleya, M. Muniandy, L. E. Heng y C. Ramendran Spr, “Minimizing student attrition in higher learning institutions in Malaysia using support vector machine,” Journal of Theoretical and Applied Information Technology, vol. 71, n.o 3, p´ags. 377-385, 2015.; D. Sansone, “Beyond EarlyWarning Indicators: High School Dropout and Machine Learning,” Oxford Bulletin of Economics and Statistics, vol. 81, n.o 2, p´ags. 456-485, 2019. DOI:10.1111/obes.12277.; MA Aliou and T Baldé. Fitting SIR model to COVID-19 pandemic data and comparative forecasting with machine learning. BMJ, 2020; Seo Yoon Chae, KyoungEun Lee, Hyun Min Lee, Nam Jung, Quang Anh Le, Biseko Juma Mafwele, Tae Ho Lee, Doo Hwan Kim, and Jae Woo Lee. Estimation of infection rate and predictions of disease spreading based on initial individuals infected with COVID-19. Frontiers in Physics, page 311, 2020.; Ian Cooper, Argha Mondal, and Chris G Antonopoulos. A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solitons & Fractals, 139:110057, 2020; Giovani L Vasconcelos, Luan P Cordeiro, Gerson C Duarte-Filho, and Arthur A Brum. Modeling the epidemic growth of preprints on COVID-19 and SARS-CoV-2. Frontiers in Physics, 9:125, 2021; Ke Wu, Didier Darcet, Qian Wang, and Didier Sornette. Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world. Nonlinear dynamics, 101(3):1561–1581, 2020; Hyun Mo Yang, Luis Pedro Lombardi Junior, and Ariana Campos Yang. Are the SIR and SEIR models suitable to estimate the basic reproduction number for the COVID-19 epidemic? medRxiv, 2020.; BENTLEY, J.L., Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9): 509-517, 1975.; BLANCO, L., ARUNACHALAM, V., DHARMARAJA, S., Introduction to probability and sthocastic processes with applications. Wiley Online Library, 2012; CHARIKAR, M., SIMINELAKIS, P., Hashing-based-estimators for kernel density in high dimensions. In 2017 IEEE 58th Annual Symposium of Foundations of Commputer Science (FOCS), pages 1032-1043. IEEE, 2017.; CHATZIS, S., KORKINOF, D. & DEMIRIS, Y., A quantum-statistical approach toward robot learning by demonstration. IEEE Transactions on Robotics, 28(6): 1371-1381, 2012; DAO, T., DE SA, C. & RÉ, C., Gaussian quadrature for kernel features. Advances in neural information processing systems, 30:6109, 2017; MUÑOZ, M., BLANCO, L., Introducción a la teoría avanzada de la probabilidad. Vol.2 Universidad Nacional de Colombia, 2002; GONZÁLEZ, F., GALLEGO, A., TOLEDO, S. & VARGAS, V., Learning with density matrices and random features, 2021.; WORACHARTCHEEWAN, APILAK, SCHADUANGRAT, NALINI, PRACHAYASITTIKUL, VIRAPONG, NANTASENAMAT, C., Data mining for the identification of metabolic syndrome status., 11(3), Excli, 369–373. 2010.; GÓMEZ, L. A. , Las enfermedades cardiovasculares: un problema de salud pública y un reto global. Biomédica, 31(4), 2011; GIRALDO-GIRALDO, N. A., ZEA-PERDOMO, A. M., TOBÓN-ARISTIZÁBAL, T., ESTRADA-RESTREPO, A., Síndrome metabólico en un grupo de adultos mayores no institucionalizados según criterios de organismos internacionales. Perspectivas en Nutrición Humana, 18(1), 25-35, 2016; CHESSEL, D., DUFOUR, A. B. THIOULOUSE, J., The ade4 Package - I: Onetable Methods. R News 4(1), 5–10 2004; R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. Vienna: Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0, 2020.; COLLAZOS, C., OTERO, H., ISAZA, J., MORA, C., Enseñanza de la electrostática por medio de la construcción de prototipos de bajo costo y el aprendizaje basado en proyectos., Formación Universitaria, 115-122, 2016; DE VINCEZI, A., TUDESCO, F., La educación como proceso de mejoramiento de la calidad de vida de los individuos y de la comunidad. Rev Iber Educ, 1-12, 2009; EDEL, R., El rendimiento académico: concepto, investigación y desarrollo. Rev Iber Calidad, Eficacia y Cambio en Educación, 4-6, 2003.; GONZÁLEZ, S. ¿Qué impacto tienen las actividades extraescolares sobre los aprendizajes de los niños y los jóvenes?. Fundació Jaume Bofill, 1-21, 2015; RODRÍGUEZ, E., CORTÉS, M. Evaluación de la estrategia pedagógica .Aprendizaje basado en proyectos": Percepción de los estudiantes. Rev de Avaliação da Educação Superior, 143-158, 2010; Banco Mundial (2009). La calidad de la educación en Colombia: Un análisis y algunas opciones para un programa de política. Unidad de Gestión del Sector de Desarrollo Humano Oficina Regional de América Latina y el Caribe.; Chessel, D., & Dufour, A. (2004). ADE4: Analisis of Evironmental Data: Exploratory.; Filmus, D. (1994). El papel de la educación frente a los desafíos de las transformaciones científico-tecnológicas. Para qué sirve la escuela.; Fondo de las Naciones Unidas para la Infancia. (2016). Estado Mundial de la Infancia 2016: Una oportunidad para cada niño. UNICEF; Hanushek, E. (1986). The economics of schooling: production and efficiency in public schools. Journal de Economic Literature, 24(3), 1141-1177.; Heinesen, E. & Graversen, B. (2005). The Effect of School Resources on Educational Attainment: Evidence from Denmark. Bulletin of Economic Research, 57(2), 109-43.; Jaimes-Amorocho, H., & Lugo, E. (2017). Los Acuerdos de Paz de la Habana: una oportunidad para disminuir la pobreza y la exclusión rural en Sucre, Colombia. Revista Colombiana de Ciencia Animal-RECIA, 207-215.; Mulford, B. (2006). Liderazgo para mejorar la calidad de la educación secundaria: algunos desarrollos internacionales. Profesorado. Revista de Currículum y Formación de Profesorado, 10(1), 0.; Pardo, C., & Del Campo, P. (2007). Combinacion de metodos factoriales y de analisis de conglomerados en R: El paquete FactoClass. Revista Colombiana de Estadistica.; Pérez, F. (2016). El papel de la educación en el posconflicto. Corporación Viva la Ciudadanía. Edición, 496; Ramírez, J. C., Parra-Peña, R. I., Corredor Fonseca, A., & González Arévalo, L. (2016). Escalón competitividad de los departamentos de Colombia; Tedesco, J. C., & López, N. (2002). Desafíos a la educación secundaria en América Latina. Revista de la CEPAL; Torres Quevedo, G. (2008). La formación de competencias laborales del bachiller técnico en la especialidad agronomía.; Agudelo-G´omez, D., Cer´on-Mu˜noz, M. & Restrepo-Betancur, L. (2008). Modelaci´on de funciones de crecimiento aplicadas a la producci´on animal. Rev Colomb Cienc Pecu; 21:39-58.; Dom´ınguez-Viveros, J., R. N´u˜nez-Dom´ınguez, R. Ram´ırezValverde, y A. Ru´ız-Flores. (2003). Influencias ambientales e ´ındice de constancia para caracter´ısticas de crecimiento en bovinos Tropicarne. T´ec. Pecu. M´ex. 41:1-18.; Dom´ınguez-Viveros, J, Rodr´ıguez-Almeida, F. A, N´u˜nez-Dom´ınguez, R, Ram´ırez- Valverde, R, Ortega-Guti´errez, J. ´A, & Ruiz-Flores, A. (2013). Ajuste de modelos no lineales y estimaci´on de par´ametros de crecimiento en bovinos tropicarne. Agrociencia, 47(1), 25-34.; Durbin, J., and G. S. Watson. (1951). Testing for serial correlation in least – squares regression. Biometrika 38: 159 – 171.; Fuente, S. d. (2011). Componentes Principales. Madrid: Universidad autonoma de Madrid; Garcia, J. (2014). Variables involucradas en la pr´actica individual y colectiva de h´abitos saludables. Salud Publica, 719-732; Godino, P.-F. (2015). Perspectiva amplicada del conocimiento didactico-matem´atico del profesor. Paradigma, 87-109; Gonzalez, M. (2005). La alimentaci´on y salud. Las matem´aticas como herramienta para establecer conexiones. Uni´on, 3-14; Ib´a˜nez, M. A. (2016). Contraloria municipal de Sincelejo. Obtenido de https:// contraloriasincelejo.gov.co/primer-informe-ambiental/; Ram´ırez, H. (2002). Acondicionamiento f´ısico y estilos de vida saludable. Colombia M´edica, 3-5.; Banister,D. The sustainable mobility paradigm Transport Policy, 15(2), 73-80, 2008.; Osorio, A. Nuevas fuentes y retos para el estudio de la movilidad urbana. Cuadernos Geográficos, 56(3), 247-267,2017; Gutierrez, J. Cómo aplicar big data en la planificación del transporte: el uso de datos de GPS en el análisis de la movilidad urbana. BID. Nota técnica nº idb-tn-1944, 2019.; Chapman, P. CRISP-DM 1.0 Step-by-step data mining guide. Obtenido de https://www.themodeling- agency.com/crisp-dm.pdf, 2019.; Bos, M. (2016), educaci´on en America Latina y el Caribe: Diagnostico y Perspectiva. BID-OCDE.; Costa M. Domingos A.(2019) promover o ensino da matematicanum contexto de formacaoprofissional com STEM. EducacionMatematica, vol31,num 1; Campo E,(2007). Combinacion de m´etodos factoriales de an´alisis de conglomerados en R: el paquete factorclass. Revista colombiana de estad´ıstica vol 30, no2 pp231 a245; OECD. (2015). The ABC of GenderEquality in Education. Paris: OECD Publishing; UNESCO InstituteforStatistics. (2018). Women in Science (FS/2018/SCI/51). Recuperado de http://uis.unesco.org/sites/default/files/documents/ fs51-women-in-science-2018-en.pdf; VERTEL-MORINSON, M., MENDEZ-RAMOS, M.C., TOVIO-GUTIERREZ, Y.A. Educación rural en Sucre-Disertación desde el análisis multivariado. Editorial Universidad de Sucre, ISBN 978-958-59926-3-4, 2018; AGUIRRE PEÑA, L., & GARCÍA GUERRERO, M (2019)., El imaginario de la comunicación política en el ciberterritorio de Twitter., Revista de la Universidad de La Salle, 82, 59-68.; MINISTERIO DE EDUCACIÓN. (2019)., Más de 120.000 usuarios de ICETEX se beneficiarán con el plan de alivios e incentivos anunciado por el Gobierno Nacional. https://www.mineducacion.gov.co/1759/w3-printer-391628.html; PRESIDENCIA DE LA REPÚBLICA. (28 DE NOVIEMBRE DE 2019)., Ley del Presupuesto General de la Nación. https://id.presidencia.gov.co/Documents/ 191129-Objecion-gubernamental-inconveniencia.pdf; PRESIDENCIA DE LA REPÚBLICA. (26 DE DICIEMBRE DE 2019), Plan Nacional de Desarrollo. Ley 1955 de 2019. https://id.presidencia.gov.co/Documents/ 191230-Decreto-2365-del-26-diciembre-del-2019.pdf; SAURA, G., MUÑOZ MORENO, J., LUENGO NAVAS, J., & MARTOS ORTEGA, J. (2017)., Protestando en Twitter: ciudadanía y empoderamiento desde la educación pública., Comunicar, 15(53), 39-48. doi: https://dialnet.unirioja.es/servlet/ articulo?codigo=6121753; Bivand, R., Yu, D., Nakaya, T., Garcia-Lopez, M.-A., Bivand, M. R. (2017). Package "spgwr". R package; Fotheringham, A. S., Brunsdon, C., Charlton, M. (2002). GeographicallyWeighted Regression: The Analysis of Spatially Varying Relationships.; Fotheringham, A. S., Crespo, R., Yao, J. (2015). Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47(4), 431-452; Huang, B., Wu, B., Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383-401; Nakaya, T., Charlton, M., Lewis, P. (2014). GWR4 user manual. Windows Application for Geographically Weighted Regression Modelling; LI Q, GUAN X, WU P, WANG X, ZHOU L, TONG Y, ET AL. Early Transmission Dynamics inWuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020; 382(13): p. 1199-1207; ORGANIZACIÓN MUNDIAL DE LA SALUD. [Online]. [citado 2021 04 05]. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019; INSTITUTO NACIONAL DE SALUD. [Online]. [citado 2021 04 05]. Disponible en: https: //www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx.; WORLD HEALTH ORGANIZATION. Coronavirus (COVID-19) Dashboard. [Online]. [citado 2021 04 05]. Disponible en: https://covid19.who.int/.; INSTITUTO NACIONAL DE SALUD. Estudio Nacional de Seroprevalencia. [Online].; 2020 [citado 2021 04 05]. Disponible en: https://www.ins.gov.co/ estudio-nacional-de-seroprevalencia/reporte.html#curso.; DEPARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICAS. DANE. [Online].; 2020 [citado 2021 02 09]. Disponible en: https://www.dane. gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/ proyecciones-de-poblacion; MAHARAJ EA, D’URSO P, CAIADO J. Time Series Clustering and Classification. 1st ed.: CRC Press Taylor and Francis Group; 2019; PEÑA D, TSAY R. Statistical Learning for Big Dependent Data New Jersey: Jhon Wiley and Sons, Inc.; 2021.; MINISTERIO DE SALUD. Brasil. [Online].; 2021 [citado 2021 05 18]. Disponible en: https://covid.saude.gov.br/.; FARIA N, MELLAN T, WHITTAKER C, CLARO I, DA S. CANDIDO D, MISHRA S, ET AL. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv Prepr Serv Heal Sci. 2021.; MURRAY, J. D. , Mathematical Biology, Vol. 1 y 2, 2nd ed., Springer, 2002.; OKUBO, A. Y LEVIN, S. A., Diffusion and Ecological Problems, Modern Perspectives. Interdisciplinary and Applied Mathematics, Springer, 2001.; https://repositorio.unal.edu.co/handle/unal/87779; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; repositorio.unal.edu.co

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20