Suchergebnisse - (("autoencoder application") OR ("Autoencoder publications"))*
-
1
Autoren: et al.
Quelle: International Journal of Adaptive Control & Signal Processing. Jul2025, Vol. 39 Issue 7, p1483-1502. 20p.
-
2
Autoren: et al.
Quelle: Applied Sciences, Vol 15, Iss 16, p 9014 (2025)
Schlagwörter: craquelure detection, convolutional neural networks, image processing, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
3
Autoren: et al.
Quelle: Applied Sciences (2076-3417); Aug2025, Vol. 15 Issue 16, p9014, 13p
-
4
Autoren:
Quelle: IEEE Access, Vol 11, Pp 124150-124162 (2023)
-
5
Autoren: et al.
Quelle: IEEE Access, Vol 10, Pp 44778-44788 (2022)
Schlagwörter: Pansharpening, multispectral image fusion, convolutional autoencoder, NSCT, remote sensing, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
6
Autoren:
Quelle: Volume 8: 47th Mechanisms and Robotics Conference (MR).
-
7
Autoren: et al.
Quelle: IEEE Transactions on Medical Imaging. 39:4137-4149
Schlagwörter: Male, 03 medical and health sciences, 0302 clinical medicine, Brain, Humans, Infant, Neuroimaging, Magnetic Resonance Imaging, Algorithms
Zugangs-URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773223
https://pubmed.ncbi.nlm.nih.gov/32746154
https://koreauniv.pure.elsevier.com/en/publications /disentangled-multimodal-adversarial-autoencoder -application -to-in
https://pubmed.ncbi.nlm.nih.gov/32746154/
https://www.ncbi.nlm.nih.gov/pubmed/32746154
http://doi.org/10.1109/TMI.2020.3013825
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773223
https://dblp.uni-trier.de/db/journals/tmi/tmi39.html#HuZWWWSLLS20 -
8
Autoren:
Quelle: 2020 IEEE 2nd International Conference on System Analysis & Intelligent Computing (SAIC). :1-4
Schlagwörter: 0301 basic medicine, 03 medical and health sciences, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 3. Good health
-
9
Autoren:
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, 0202 electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), 02 engineering and technology, 01 natural sciences, 0105 earth and related environmental sciences, Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2302.11294
-
10
Autoren: et al.
Quelle: 2019 IEEE Power & Energy Society General Meeting (PESGM). :1-5
Schlagwörter: Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Electrical Engineering and Systems Science - Signal Processing, 7. Clean energy
-
11
Autoren: et al.
Quelle: 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)
-
12
Autoren: et al.
Quelle: Artificial Intelligence Review. 57
-
13
Autoren: et al.
Quelle: Guang pu xue yu guang pu fen xi = Guang pu. 36(9)
Schlagwörter: Machine Learning, Spectroscopy, Near-Infrared, 05 social sciences, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Neural Networks, Computer, 0503 education, Algorithms
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/30084593
-
14
Autoren:
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, 0209 industrial biotechnology, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Statistics - Machine Learning, Machine Learning (stat.ML), 02 engineering and technology, Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/1804.05320
-
15
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Machine Learning,Deep Learning,HEP,Model Compression,Quantization-Aware Training,HLS4ML,Anomaly Detection,Variational Autoencoder,FPGA, Physics [LM-DM270]
Dateibeschreibung: application/pdf
Relation: https://amslaurea.unibo.it/id/eprint/28788/1/thesisLorenzo.pdf; Valente, Lorenzo (2023) A variational autoencoder application for real-time anomaly detection at CMS. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270]
-
16
Autoren: et al.
Quelle: IEEE Transactions on Medical Imaging; Dec2020, Vol. 39 Issue 12, p4137-4149, 13p
-
17
Autoren:
Quelle: Scientific Reports; 10/15/2025, Vol. 15 Issue 1, p1-13, 13p
-
18
Autoren:
Quelle: Digital Signal Processing. Jan2026:Part C, Vol. 168, pN.PAG-N.PAG. 1p.
Schlagwörter: *WATER distribution, *LEAK detection, *FEATURE selection, *PATTERN perception, *AUTOENCODERS, *CONVOLUTIONAL neural networks, *OUTLIER detection
-
19
Autoren: et al.
Quelle: ACM Transactions on Multimedia Computing, Communications & Applications; Sep2025, Vol. 21 Issue 9, p1-23, 23p
-
20
Autoren: et al.
Quelle: Journal of Marine Science & Engineering; Jul2025, Vol. 13 Issue 7, p1231, 23p
Full Text Finder
Nájsť tento článok vo Web of Science