Suchergebnisse - "variational graph autoencoder (VGAE)"
-
1
Autoren: et al.
Quelle: Front Pharmacol
Frontiers in Pharmacology, Vol 15 (2025) -
2
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IEEE Internet of Things Journal. 7:8943-8955
Schlagwörter: IoT, variational graph autoencoder (VGAE), Smart Cities, 13. Climate action, nternet of Things (IoT), 11. Sustainability, 0202 electrical engineering, electronic engineering, information engineering, Deep learning, 02 engineering and technology, 7. Clean energy
Zugangs-URL: https://dblp.uni-trier.de/db/journals/iotj/iotj7.html#DoTQHMPD20
https://ieeexplore.ieee.org/abstract/document/9106368
https://biblio.ugent.be/publication/8676438
https://researchportal.vub.be/nl/publications/graph -deep-learning-based-inference-of-fine-grained-air-quality-f
https://biblio.vub.ac.be/vubir/graphdeeplearningbased-inference-of-finegrained-air-quality-from-mobile-iot-sensors(c1df178b-dd01-4bce-ab81-ec9243b2b964).html
Full Text Finder
Nájsť tento článok vo Web of Science