Výsledky vyhľadávania - "stochastic mirror descent algorithm"

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Popis súboru: application/pdf

    Relation: mr:MR4273575; zbl:Zbl 07396266; reference:[1] Bregman, L. M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming.USSR Computational Mathematics and Mathematical Physics 7 (1967), 200-217. MR 0215617; reference:[2] Chen, G., Zeng, X., Hong, Y.: Distributed optimisation design for solving the Stein equation with constraints.IET Control Theory Appl. 13 (2019), 2492-2499.; reference:[3] Cheng, S., Liang, S.: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate.Kybernetika 56 (2020), 559-577. MR 4131743; reference:[4] Deng, W., Zeng, X., Hong, Y.: Distributed computation for solving the Sylvester equation based on optimization.IEEE Control Systems Lett. 4 (2019), 414-419. MR 4211320; reference:[5] Gholami, M. R., Jansson, M., al., E. G. Ström et: Diffusion estimation over cooperative multi-agent networks with missing data.IEEE Trans. Signal Inform. Process. over Networks 2 (2016), 27-289. MR 3571397; reference:[6] Lan, G., Lee, S., Zhou, Y.: Communication-efficient algorithms for decentralized and stochastic optimization.Math. Programm. 180 (2020), 237-284. MR 4062837; reference:[7] Lei, J., Shanbhag, U. V., al., J. S. Pang et: On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games.Math. Oper. Res. 45 (2020), 157-190. MR 4066993; reference:[8] Liu, J., Morse, A. S., Nedic, A., a., et: Exponential convergence of a distributed algorithm for solving linear algebraic equations.Automatica 83 (2017), 37-46. MR 3680412; reference:[9] Mou, S., Liu, J., Morse, A. S.: A distributed algorithm for solving a linear algebraic equation.IEEE Trans. Automat. Control 60 (2015), 2863-2878. MR 3419577; reference:[10] Ram, S. S., Nedic, A., Veeravalli, V. V.: Distributed stochastic subgradient projection algorithms for convex optimization.J. Optim. Theory Appl. 147 (2010), 516-545. MR 2733992; reference:[11] Shi, G., Anderson, B. D. O., Helmke, U.: Network flows that solve linear equations.IEEE Trans. Automat. Control 62 (2016), 2659-2674. MR 3660554; reference:[12] Wang, Y., Lin, P., Hong, Y.: Distributed regression estimation with incomplete data in multi-agent networks.Science China Inform. Sci. 61 (2018), 092202. MR 3742944, 10.1007/s11432-016-9173-8; reference:[13] Wang, Y., Lin, P., Qin, H.: Distributed classification learning based on nonlinear vector support machines for switching networks.Kybernetika 53 (2017), 595-611. MR 3730254; reference:[14] Wang, Y., Zhao, W., al., Y. Hong et: Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks.SIAM J. Control Optim. 57 (2019), 2821-2842. MR 3995027; reference:[15] Yuan, D., Hong, Y., al., D. W. C. Ho et: Optimal distributed stochastic mirror descent for strongly convex optimization.Automatica 90(2018), 196-203. MR 3764399; reference:[16] Yuan, D., Hong, Y., al., D. W. C. Ho et: Distributed mirror descent for online composite optimization.IEEE Trans. Automat. Control (2020). MR 4210454; reference:[17] Zeng, X., Liang, S., al., Y. Hong et: Distributed computation of linear matrix equations: An optimization perspective.IEEE Trans. Automat. Control 64 (2018), 1858-1873. MR 3951032

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20