Výsledky vyhľadávania - "stochastic mirror descent algorithm"
-
1
Autori:
Zdroj: IEEE Control Systems Letters. 8:2397-2402
Predmety: Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Prístupová URL adresa: http://arxiv.org/abs/2407.05863
-
2
General inertial proximal stochastic mirror descent algorithm beyond Lipschitz smoothness assumption
Autori:
Zdroj: Journal of Computational and Applied Mathematics. :117108
-
3
Autori: a ďalší
Zdroj: Systems & Control Letters. 203:106159
-
4
Autori:
Zdroj: 2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :671-676
-
5
Autori:
Zdroj: Kybernetika. :256-271
Predmety: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
6
Autori:
Zdroj: Control Theory and Technology. 18:339-347
Predmety: 0209 industrial biotechnology, 0211 other engineering and technologies, 02 engineering and technology, 12. Responsible consumption
Prístupová URL adresa: https://link.springer.com/article/10.1007/s11768-020-00018-8
-
7
Autori:
Zdroj: 2018 IEEE 14th International Conference on Control and Automation (ICCA). :716-721
-
8
Autori: Mohammad Alkousa
Zdroj: Forum for Interdisciplinary Mathematics ISBN: 9789811584978
Predmety: Optimization and Control (math.OC), 0211 other engineering and technologies, FOS: Mathematics, 02 engineering and technology, Mathematics - Optimization and Control
-
9
Autori:
Zdroj: 2010 10th IEEE International Conference on Computer and Information Technology. :1241-1245
Predmety: 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Prístupová URL adresa: https://dblp.uni-trier.de/db/conf/IEEEcit/IEEEcit2010.html#OuyangG10
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000005577880
https://ieeexplore.ieee.org/document/5577880/
https://www.computer.org/csdl/proceedings/cit/2010/4108/00/4108b241.pdf
http://dblp.uni-trier.de/db/conf/IEEEcit/IEEEcit2010.html#OuyangG10 -
10
Autori:
Predmety: keyword:distributed computation of matrix equation, keyword:multi-agent system, keyword:sublinear convergence, keyword:stochastic mirror descent algorithm, msc:68M15, msc:93A14
Popis súboru: application/pdf
Relation: mr:MR4273575; zbl:Zbl 07396266; reference:[1] Bregman, L. M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming.USSR Computational Mathematics and Mathematical Physics 7 (1967), 200-217. MR 0215617; reference:[2] Chen, G., Zeng, X., Hong, Y.: Distributed optimisation design for solving the Stein equation with constraints.IET Control Theory Appl. 13 (2019), 2492-2499.; reference:[3] Cheng, S., Liang, S.: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate.Kybernetika 56 (2020), 559-577. MR 4131743; reference:[4] Deng, W., Zeng, X., Hong, Y.: Distributed computation for solving the Sylvester equation based on optimization.IEEE Control Systems Lett. 4 (2019), 414-419. MR 4211320; reference:[5] Gholami, M. R., Jansson, M., al., E. G. Ström et: Diffusion estimation over cooperative multi-agent networks with missing data.IEEE Trans. Signal Inform. Process. over Networks 2 (2016), 27-289. MR 3571397; reference:[6] Lan, G., Lee, S., Zhou, Y.: Communication-efficient algorithms for decentralized and stochastic optimization.Math. Programm. 180 (2020), 237-284. MR 4062837; reference:[7] Lei, J., Shanbhag, U. V., al., J. S. Pang et: On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games.Math. Oper. Res. 45 (2020), 157-190. MR 4066993; reference:[8] Liu, J., Morse, A. S., Nedic, A., a., et: Exponential convergence of a distributed algorithm for solving linear algebraic equations.Automatica 83 (2017), 37-46. MR 3680412; reference:[9] Mou, S., Liu, J., Morse, A. S.: A distributed algorithm for solving a linear algebraic equation.IEEE Trans. Automat. Control 60 (2015), 2863-2878. MR 3419577; reference:[10] Ram, S. S., Nedic, A., Veeravalli, V. V.: Distributed stochastic subgradient projection algorithms for convex optimization.J. Optim. Theory Appl. 147 (2010), 516-545. MR 2733992; reference:[11] Shi, G., Anderson, B. D. O., Helmke, U.: Network flows that solve linear equations.IEEE Trans. Automat. Control 62 (2016), 2659-2674. MR 3660554; reference:[12] Wang, Y., Lin, P., Hong, Y.: Distributed regression estimation with incomplete data in multi-agent networks.Science China Inform. Sci. 61 (2018), 092202. MR 3742944, 10.1007/s11432-016-9173-8; reference:[13] Wang, Y., Lin, P., Qin, H.: Distributed classification learning based on nonlinear vector support machines for switching networks.Kybernetika 53 (2017), 595-611. MR 3730254; reference:[14] Wang, Y., Zhao, W., al., Y. Hong et: Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks.SIAM J. Control Optim. 57 (2019), 2821-2842. MR 3995027; reference:[15] Yuan, D., Hong, Y., al., D. W. C. Ho et: Optimal distributed stochastic mirror descent for strongly convex optimization.Automatica 90(2018), 196-203. MR 3764399; reference:[16] Yuan, D., Hong, Y., al., D. W. C. Ho et: Distributed mirror descent for online composite optimization.IEEE Trans. Automat. Control (2020). MR 4210454; reference:[17] Zeng, X., Liang, S., al., Y. Hong et: Distributed computation of linear matrix equations: An optimization perspective.IEEE Trans. Automat. Control 64 (2018), 1858-1873. MR 3951032
Dostupnosť: http://hdl.handle.net/10338.dmlcz/149038
-
11
Autori:
Zdroj: Kybernetika; 2021, Vol. 57 Issue 2, p256-271, 16p
Predmety: MULTIAGENT systems, ALGORITHMS, DISTRIBUTED algorithms
-
12
Autori:
Zdroj: Control Theory & Technology; Nov2020, Vol. 18 Issue 4, p339-347, 9p
-
13
Autori: a ďalší
Zdroj: Computational Optimization & Applications; May2025, Vol. 91 Issue 1, p201-233, 33p
Predmety: LIPSCHITZ continuity, INTEGERS, ALGORITHMS
-
14
Autori:
Zdroj: Information & Inference: A Journal of the IMA; Jun2023, Vol. 12 Issue 2, p851-896, 46p
Predmety: STOCHASTIC approximation, ORTHOGONAL matching pursuit, NOISE
-
15
Autori: Guigues, Vincent
Zdroj: Mathematical Programming; May2017, Vol. 163 Issue 1/2, p169-212, 44p
-
16
Autori:
Zdroj: Statistics & Computing; Feb2026, Vol. 36 Issue 1, p1-28, 28p
-
17
Autori: Lu, Haihao
Zdroj: INFORMS Journal on Optimization; Fall2019, Vol. 1 Issue 4, p288-303, 16p
-
18
Autori:
Zdroj: Operations Research; Sep/Oct2025, Vol. 73 Issue 5, p2661-2679, 19p
-
19
Autori: a ďalší
-
20
Autori:
Zdroj: SIAM Journal on Optimization; 2018, Vol. 28 Issue 2, p1337-1366, 30p
Full Text Finder
Nájsť tento článok vo Web of Science