Suchergebnisse - "stochastic gradient algorithms"
-
1
Autoren: et al.
Quelle: Computer Modeling in Engineering & Sciences. 142:2585-2616
-
2
Quelle: Partially Observed Markov Decision Processes ISBN: 9781009449441
-
3
Quelle: Partially Observed Markov Decision Processes ISBN: 9781009449441
-
4
Autoren:
Quelle: International Journal of Adaptive Control and Signal Processing. 38:3268-3289
Schlagwörter: least squares, 0209 industrial biotechnology, feedback nonlinear system, Systems theory, control, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, stochastic gradient, auxiliary model, convergence analysis
Dateibeschreibung: application/xml
-
5
-
6
Autoren: et al.
Schlagwörter: Machine Learning, FOS: Computer and information sciences, Machine Learning (stat.ML), Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2508.20618
-
7
-
8
Autoren:
Quelle: IEEE Transactions on Automatic Control. 67:1792-1805
Schlagwörter: Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (stat.ML), Systems and Control (eess.SY), 02 engineering and technology, Electrical Engineering and Systems Science - Systems and Control, 01 natural sciences, Machine Learning (cs.LG), Statistics - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, 0202 electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, 0101 mathematics
-
9
Autoren: et al.
Quelle: International Journal of Robust and Nonlinear Control. 32:5534-5554
Schlagwörter: 0209 industrial biotechnology, Engineering design, Electrical engineering. Electronics Nuclear engineering, TA174, TK, Manufactures, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, TS
Dateibeschreibung: application/pdf; text
-
10
Autoren:
Quelle: Optimal Control Applications and Methods. 43:402-417
-
11
Autoren: et al.
Quelle: Circuits, Systems, and Signal Processing. 41:1895-1912
Schlagwörter: 0209 industrial biotechnology, 02 engineering and technology
-
12
Autoren: et al.
Quelle: Negrea , J , Yang , J , Feng , H , Roy , D M & Huggins , J H 2023 ' Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics ' arXiv preprint .
Index Begriffe: stat.CO, cs.LG, stat.ME, stat.ML, workingPaper
URL:
https://researchprofiles.ku.dk/da/publications/tuning-stochastic-gradient-algorithms-for-statistical-inference-via-largesample-asymptotics(051ecd25-619f-45e8-a623-9d260fe771ea).html https://curis.ku.dk/ws/files/362463845/Tuning_Stochastic_Gradient_Algorithms.pdf -
13
Autoren: et al.
Quelle: Journal of the Franklin Institute. 361:107295
Schlagwörter: CARARMA, Estimation and detection in stochastic control theory, Applications of mathematical programming, multi-innovation identification method, GESG, moving data window, Stochastic learning and adaptive control
Dateibeschreibung: application/xml
-
14
-
15
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Tang, B J, Egiazarian, K & Davies, M 2019, The Limitation and Practical Acceleration of Stochastic Gradient Algorithms in Inverse Problems. in 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019-Proceedings ., 18778660, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, vol. 2019-May, Institute of Electrical and Electronics Engineers Inc., 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019, Brighton, United Kingdom, 12/05/19 . https://doi.org/10.1109/ICASSP.2019.8683368
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)Schlagwörter: hyperparameter learning, Signal Processing, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, maximum likelihood, Electrical and Electronic Engineering, 113 Computer and information sciences, Software, sparsity-inducing norms
Dateibeschreibung: application/pdf; fulltext
Zugangs-URL: https://www.pure.ed.ac.uk/ws/files/206650698/icassp2019.pdf
https://ieeexplore.ieee.org/document/8683368
https://dblp.uni-trier.de/db/conf/icassp/icassp2019.html#TangED19
http://dblp.uni-trier.de/db/conf/icassp/icassp2019.html#TangED19
https://sigport.org/documents/limitation-and-practical-acceleration-stochastic -gradient -algorithms -inverse-problems
https://www.pure.ed.ac.uk/ws/files/206650698/icassp2019.pdf
https://hdl.handle.net/20.500.11820/5b0fd9f6-6c4a-40b0-bfc2-d366ece233a6
https://trepo.tuni.fi/handle/10024/134969 -
16
Autoren:
Quelle: IEEE Access, Vol 8, Pp 4885-4894 (2020)
Schlagwörter: sparse system, Diffusion adaptive algorithms, 0202 electrical engineering, electronic engineering, information engineering, variable scaling factor, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, zero attracting, exponentiated error, TK1-9971
-
17
Quelle: Inference and Learning from Data ISBN: 9781009218146
-
18
Autoren:
Quelle: Circuits, Systems, and Signal Processing. 40:1635-1651
Schlagwörter: 0209 industrial biotechnology, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
19
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Statistics. 54:618-635
Schlagwörter: Asynchronous parallel optimization, Mathematics - Statistics Theory, Statistics Theory (math.ST), 01 natural sciences, [STAT] Statistics [stat], [STAT]Statistics [stat], Averaging, FOS: Mathematics, Distributed estimation, 0101 mathematics, Central Limit Theorem, Stochastic Gradient Descent
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/pdf/1710.07926
http://arxiv.org/abs/1710.07926
http://ui.adsabs.harvard.edu/abs/2017arXiv171007926G/abstract
https://www.tandfonline.com/doi/full/10.1080/02331888.2020.1764557
https://hal.science/hal-01620943v1
https://doi.org/10.1080/02331888.2020.1764557
https://hal.science/hal-01620943v1/document -
20
Autoren:
Quelle: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8594-8598
Schlagwörter: FOS: Computer and information sciences, 0209 industrial biotechnology, 0203 mechanical engineering, Optimization and Control (math.OC), FOS: Mathematics, Computer Science - Multiagent Systems, 02 engineering and technology, Mathematics - Optimization and Control, Multiagent Systems (cs.MA)
Zugangs-URL: http://arxiv.org/pdf/1910.09587
http://arxiv.org/abs/1910.09587
https://collaborate.princeton.edu/en/publications/on-distributed-stochastic -gradient -algorithms -for-global-optimiza
https://pennstate.pure.elsevier.com/en/publications/on-distributed-stochastic -gradient -algorithms -for-global-optimiza
http://dblp.uni-trier.de/db/journals/corr/corr1910.html#abs-1910-09587
https://dblp.uni-trier.de/db/conf/icassp/icassp2020.html#SwensonSP20
https://ieeexplore.ieee.org/abstract/document/9054279
https://arxiv.org/abs/1910.09587
Full Text Finder
Nájsť tento článok vo Web of Science