Suchergebnisse - "sparse denoising autoencoder"
-
1
Autoren: et al.
Quelle: Ironmaking & Steelmaking: Processes, Products and Applications.
-
2
Autoren: et al.
Quelle: 2024 43rd Chinese Control Conference (CCC). :4835-4840
-
3
Autoren:
Quelle: 2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC). :506-510
-
4
Autoren: et al.
Quelle: Annals of Nuclear Energy. 220:111460
-
5
Autoren: et al.
Quelle: IEEE Transactions on Cybernetics. 53:428-442
-
6
Autoren: et al.
Quelle: 2023 7th International Conference on Computing Methodologies and Communication (ICCMC). :541-546
-
7
Autoren:
Quelle: International Journal of Electrical Power & Energy Systems, Vol 158, Iss , Pp 109960- (2024)
Schlagwörter: Electricity consumption behavior classification, Feature extraction, Autoencoder, Clustering, Secondary classification, Production of electric energy or power. Powerplants. Central stations, TK1001-1841
Dateibeschreibung: electronic resource
-
8
Autoren:
Quelle: Scientific Programming. 2021:1-12
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 16. Peace & justice
Dateibeschreibung: text/xhtml
-
9
Autoren: et al.
Quelle: Journal of Computer and Communications. 10:138-153
-
10
Autoren:
Quelle: Evolutionary Intelligence. 14:133-149
-
11
Autoren: et al.
Quelle: Applied Soft Computing. 74:693-708
Schlagwörter: 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
12
Autoren: et al.
Quelle: Machines, Vol 9, Iss 12, p 360 (2021)
Schlagwörter: intelligent fault diagnosis, stacked pruning sparse denoising autoencoder, convolutional neural network, anti-noise, Mechanical engineering and machinery, TJ1-1570
Dateibeschreibung: electronic resource
-
13
Autoren: et al.
Quelle: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS). :96-100
-
14
Low-level structure feature extraction for image processing via stacked sparse denoising autoencoder
Autoren: et al.
Quelle: Neurocomputing. 243:12-20
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
15
Autoren: et al.
Quelle: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). :1-6
Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
16
Autoren:
Quelle: Advances in Modelling and Analysis B. 60:210-223
-
17
Autoren: et al.
Quelle: Applied Sciences, Vol 9, Iss 13, p 2743 (2019)
Schlagwörter: IMFs, multiscale permutation entropy, stacked sparse denoising autoencoder, fault diagnosis, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
18
Autoren: et al.
Quelle: 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS). :283-288
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
19
Autoren: et al.
Quelle: BioMedical Engineering OnLine, Vol 17, Iss 1, Pp 1-19 (2018)
Schlagwörter: Chest screening, Computer aided diagnosis, Deep learning, Autoencoder, Receiver operating characteristic, Medical technology, R855-855.5
Dateibeschreibung: electronic resource
-
20
Autoren: et al.
Quelle: Computers and Electrical Engineering. 103:108292
Full Text Finder
Nájsť tento článok vo Web of Science