Suchergebnisse - "singularity analysis of generating functions"
-
1
Autoren:
Weitere Verfasser:
Quelle: Random Structures & Algorithms. 65:387-410
Schlagwörter: AppliedMathematics, [MATH.MATH-PR] Mathematics [math]/Probability [math.PR], 1704 Computer Graphics and Computer-Aided Design, 01 natural sciences, Software EngineeringMathematics, 510 Mathematics, 2604 Applied Mathematics, FOS: Mathematics, Malthusian growth exponent, 0101 mathematics, 2600 General Mathematics, Galton-Watson process, Galton, Watson process, Probability (math.PR), singularity analysis of generating functions, transport equation Research Areas, 1712 Software, [MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO], 10123 Institute of Mathematics, 60J80 (primary) 60E10, 35Q49 (secondary), Mathematics Computer Science, transport equation, Computer Science, stochastic reinforcement, Mathematics - Probability
Dateibeschreibung: application/pdf; Random_Struct_Algorithms___2024___Bertoin___Reinforced_Galton_Watson_processes_I_Malthusian_exponents.pdf - application/pdf
-
2
Autoren: et al.
Weitere Verfasser: et al.
Quelle: https://hal.science/hal-04328349 ; 2023.
Schlagwörter: Galton-Watson process, Malthusian growth exponent, stochastic reinforcement, transport equation, singularity analysis of generating functions, [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2306.02476; hal-04328349; https://hal.science/hal-04328349; https://hal.science/hal-04328349/document; https://hal.science/hal-04328349/file/RGW.pdf; ARXIV: 2306.02476
-
3
Autoren: Dudley Stark
Quelle: Random Structures and Algorithms. 11:51-80
Schlagwörter: Combinatorial probability, combinatorial structures, singularity analysis of generating functions, Ewens sampling formula, mapping patterns
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/1057091
https://doi.org/10.1002/(sici)1098-2418(199708)11:1<51::aid-rsa2>3.0.co;2-t
https://dblp.uni-trier.de/db/journals/rsa/rsa11.html#Stark97 -
4
Autoren:
Weitere Verfasser:
Quelle: Ann. Inst. H. Poincaré Probab. Statist. 49, no. 2 (2013), 428-455
Schlagwörter: Singularity analysis, [MATH.MATH-PR] Mathematics [math]/Probability [math.PR], Galton--Watson process, Probability (math.PR), Branching Brownian motion with absorption, secondary 34M35, Briot-Bouquet equation, 01 natural sciences, Briot–Bouquet equation, Primary 60J80, Singularity analysis of generating functions, Travelling wave, Branching Brownian motion, FOS: Mathematics, Galton–Watson process, 0101 mathematics, Mathematics - Probability, FKPP equation
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/abs/1004.1426
https://hal.science/hal-00845702v1
https://doi.org/10.1214/11-aihp451
https://arxiv.org/abs/1004.1426
https://arxiv.org/pdf/1004.1426
https://projecteuclid.org/journals/annales-de-linstitut-henri-poincare-probabilites-et-statistiques/volume-49/issue-2/The-number-of-absorbed-individuals-in-branching-Brownian-motion-with/10.1214/11-AIHP451.full
https://arxiv.org/pdf/1004.1426
http://projecteuclid.org/download/pdfview_1/euclid.aihp/1366117653
https://projecteuclid.org/download/pdfview_1/euclid.aihp/1366117653
https://hal.archives-ouvertes.fr/hal-00472913v3
https://ui.adsabs.harvard.edu/abs/2013AIHPB..49..428M/abstract
https://hal.science/hal-00472913v3
https://hal.science/hal-00472913v3/document
https://doi.org/10.1214/11-aihp451
http://projecteuclid.org/euclid.aihp/1366117653
Full Text Finder
Nájsť tento článok vo Web of Science