Suchergebnisse - "residual convolutional autoencoder"
-
1
Autoren:
Quelle: Multimedia Tools and Applications. 84:23725-23743
-
2
Autoren: et al.
Quelle: Monthly Notices of the Royal Astronomical Society. 516:3082-3091
Schlagwörter: 0103 physical sciences, 01 natural sciences
-
3
Autoren: et al.
Quelle: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). :1292-1295
Schlagwörter: Electrocardiography, Fetus, Pregnancy, 0206 medical engineering, Disease Progression, Humans, Female, 02 engineering and technology, Heart Rate, Fetal, Algorithms
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/36085674
-
4
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Structural Health Monitoring. 22:1790-1806
-
5
Autoren:
Quelle: IEEE Transactions on Industrial Informatics. 16:6347-6358
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
6
Autoren: et al.
Quelle: EURASIP Journal on Advances in Signal Processing, Vol 2022, Iss 1, Pp 1-20 (2022)
Schlagwörter: Underwater acoustic source localization, Semi-supervised learning, Convolutional autoencoder, Self-attentive mechanism, Data mismatch, Telecommunication, TK5101-6720, Electronics, TK7800-8360
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1687-6180
-
7
Autoren: et al.
Quelle: 2018 25th IEEE International Conference on Image Processing (ICIP). :3044-3048
Schlagwörter: 0103 physical sciences, 01 natural sciences
-
8
Autoren:
Quelle: Multimedia Tools & Applications; Jun2025, Vol. 84 Issue 21, p23725-23743, 19p
Schlagwörter: AUTOENCODERS, DEEP learning, ONLINE education, ATTENTION, PROBABILITY theory
-
9
Autoren: et al.
Quelle: Journal of Ocean University of China; Dec2025, Vol. 24 Issue 6, p1657-1669, 13p
-
10
Autoren: et al.
Quelle: 2025 International Joint Conference on Neural Networks (IJCNN) ; page 1-8
-
11
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Engineering Research Express ; volume 7, issue 4, page 045257 ; ISSN 2631-8695
-
12
Autoren: et al.
Quelle: IEEE Transactions on Artificial Intelligence ; page 1-7 ; ISSN 2691-4581
-
13
Autoren: et al.
Quelle: Monthly Notices of the Royal Astronomical Society; Oct2022, Vol. 516 Issue 2, p3082-3091, 10p
-
14
Autoren: et al.
Quelle: Structural Health Monitoring; May2023, Vol. 22 Issue 3, p1790-1806, 17p
-
15
Autoren: et al.
Quelle: World Electric Vehicle Journal, Vol 14, Iss 208, p 208 (2023)
Schlagwörter: autonomous driving, scenario identification, naturalistic driving data, one-dimensional residual convolutional autoencoder, optimized K-means algorithm, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Transportation engineering, TA1001-1280
Relation: https://www.mdpi.com/2032-6653/14/8/208; https://doaj.org/toc/2032-6653; https://doaj.org/article/5e4361edf4684782aa3e21ebaae875c6
-
16
Semi-supervised underwater acoustic source localization based on residual convolutional autoencoder.
Autoren: et al.
Quelle: EURASIP Journal on Advances in Signal Processing; 11/8/2022, Vol. 2022 Issue 1, p1-20, 20p
Schlagwörter: ACOUSTIC localization, UNDERWATER acoustics, FEATURE extraction, MACHINE learning
-
17
Autoren:
Quelle: IEEE Transactions on Industrial Informatics; Oct2020, Vol. 16 Issue 10, p6347-6358, 12p
-
18
Alternate Title: Unsupervised Transfer Learning with Residual Convolutional Autoencoder Networks for Bearing Fault Diagnosis. (English)
Autoren: et al.
Quelle: China Mechanical Engineering; 7/25/2022, Vol. 33 Issue 14, p1707-1716, 10p
Schlagwörter: FAULT diagnosis, DEEP learning, ROLLER bearings, DISTRIBUTION (Probability theory), INTELLIGENT tutoring systems
Firma/Körperschaft: CASE Western Reserve University
-
19
Autoren:
Quelle: Evolving Systems; Dec2025, Vol. 16 Issue 4, p1-15, 15p
-
20
Alternate Title: Adaptive residual convolutional auto-encoder network and its fault diagnosis application. (English)
Autoren: et al.
Quelle: Journal of Mechanical & Electrical Engineering; Mar2025, Vol. 42 Issue 3, p529-538, 10p
Schlagwörter: FEATURE extraction, ROLLER bearings, AUTOENCODERS, DIAGNOSIS, STANDARD deviations
Full Text Finder
Nájsť tento článok vo Web of Science