Suchergebnisse - "real-time anomaly detection"
-
1
Weitere Verfasser:
Schlagwörter: Open Access, Autonomous Systems, Generative AI, Large Language Models, Zero Trust Architecture, CyberPhysical Systems, UAV Swarms, Secure Communications, Distributed Intelligence, Real-Time Anomaly Detection, Machine Learning, Robotics, Security and Resilience, AI-Driven Approaches, Secure Autonomy, Safety-Critical Systems, Fault Mitigation, Swarm Intelligence, Secure Computing, Autonomous Robotics, Artificial intelligence, Machine learning, Security and fire alarm systems, Computer security, Transport technology and trades
Dateibeschreibung: application/pdf
Relation: Artificial Intelligence (R0)
Zugangs-URL: https://library.oapen.org/handle/20.500.12657/108702
-
2
Autoren:
Quelle: International Journal of Mathematical, Engineering and Management Sciences, Vol 10, Iss 3, Pp 777-796 (2025)
Schlagwörter: telecom network monitoring, FOS: Computer and information sciences, Technology, Computer Science - Machine Learning, real-time anomaly detection, I.2.6, I.2.7, G.3, 62M10, 62P30, 68T07, data drift detection, H.2.8, H.3.3, Machine Learning (cs.LG), hybrid machine learning models, ai powered data drift detection, QA1-939, hierarchical temporal memory (htm), time series, Mathematics, sequential probability ratio test (sprt), streaming data analysis
-
3
Integrating edge computing, data science and advanced cyber defense for autonomous threat mitigation
Autoren:
Quelle: International Journal of Science and Research Archive. 15:063-080
-
4
Autoren:
Quelle: Journal of Economic Theory and Business Management; Vol. 2 No. 2 (2025); 14-23
Schlagwörter: Machine Learning, Market Surveillance, Real-time Anomaly Detection, Investment Banking, Trading Behavior Analytics
Dateibeschreibung: application/pdf
-
5
Autoren:
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-26 (2025)
Schlagwörter: Next-generation AI, Autonomous energy optimization, Real-time anomaly detection, IoT-driven wireless sensor networks, Artificial intelligence, Energy efficiency, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
6
Autoren: Krisha Patel
Schlagwörter: Swipe gesture analysis, Continuous authentication, Unified Payments Interface (UPI), Keystroke dynamics, Transaction fraud prevention, Real-time anomaly detection, Unsupervised learning, AI-driven authentication, Fraud detection, Machine learning, User behavior analysis, Digital payment security, Behavioral biometrics, Supervised learning
-
7
Autoren:
Quelle: Engineering Science and Technology, an International Journal, Vol 69, Iss, Pp 102119-(2025)
-
8
Autoren:
Quelle: Journal of Economics, Finance And Management Studies.
-
9
Autoren: et al.
Quelle: IEEE Access, Vol 12, Pp 63683-63700 (2024)
Schlagwörter: real-time anomaly detection, Urban traffic management, intelligent transportation systems, 0502 economics and business, 05 social sciences, 11. Sustainability, 0202 electrical engineering, electronic engineering, information engineering, traffic density prediction, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, TK1-9971
-
10
Autoren: et al.
Quelle: Scientific Reports, Vol 14, Iss 1, Pp 1-22 (2024)
Schlagwörter: Server farm telemetry, Real-time anomaly detection, Periodic data, Pre-processing, AnDePeD, AnDePeD Pro, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
11
Autoren:
Quelle: Applied Sciences, Vol 15, Iss 15, p 8619 (2025)
Schlagwörter: artificial intelligence security, embedded machine learning, cyber–physical systems, motor control security, real-time anomaly detection, DShot protocol security, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
12
Autoren:
Quelle: Computer Sciences & Mathematics Forum, Vol 10, Iss 1, Pp 8-0 (2025)
Schlagwörter: IoT data streams, threat mitigation, real-time anomaly detection, IoT security, machine learning, traffic management, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
-
13
Autoren: Dixit, Sachin
Quelle: Journal of Artificial Intelligence Research; Vol. 4 No. 2 (2024): Journal of Artificial Intelligence Research; 51-77 ; 2583-7435
Schlagwörter: generative adversarial networks, fraud detection, FinTech, real-time anomaly detection, deep learning, financial transactions, adversarial networks, regulatory compliance
Dateibeschreibung: application/pdf
Relation: https://thesciencebrigade.com/JAIR/article/view/402/376; https://thesciencebrigade.com/JAIR/article/view/402
Verfügbarkeit: https://thesciencebrigade.com/JAIR/article/view/402
-
14
Autoren: Hotamov , F.N.
Quelle: Science and Innovation; Vol. 3 No. 40 (2025): Science and Innovation; 26-28 ; Наука и инновация; Том 3 № 40 (2025): Наука и инновация; 26-28
Schlagwörter: adaptive threshold, sliding window, real-time anomaly detection
Dateibeschreibung: application/pdf
Verfügbarkeit: https://in-academy.uz/index.php/si/article/view/62945
-
15
Autoren: et al.
Schlagwörter: Industry 4.0, Machine Learning, Real-Time Anomaly Detection, Smart Manufacturing
Relation: Conference on Manufacturing Systems 2025; Procedia CIRP; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://publica.fraunhofer.de/handle/publica/489921
-
16
Autoren:
Schlagwörter: ARIMA, LSTM, TIMESERIES DATA, HYBRID MODEL ARIMA LSTM, NETWORK TRAFFIC PREDICTION, real time anomaly detection, Telecommunications, Telekommunikation, Communication Systems, Kommunikationssystem, Computer Systems, Datorsystem
Dateibeschreibung: application/pdf
Verfügbarkeit: http://urn.kb.se/resolve?urn=urn:nbn:se:bth-28338
-
17
Autoren:
Schlagwörter: Data Analytics, Control Systems, Business Strategies, benchmark, industrie 4.0, real-time anomaly detection algorithms, streaming data
Dateibeschreibung: 7 pages; application/pdf
Relation: Proceedings of the 55th Hawaii International Conference on System Sciences; http://hdl.handle.net/10125/80106
-
18
Autoren:
Quelle: Journal of Modern Power Systems and Clean Energy, Vol 6, Iss 2, Pp 235-243 (2018)
Schlagwörter: Data cleansing, Very short-term load forecasting, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, TJ807-830, 02 engineering and technology, Real-time anomaly detection, 7. Clean energy, Multiple linear regression, Renewable energy sources
Zugangs-URL: https://link.springer.com/content/pdf/10.1007%2Fs40565-017-0351-7.pdf
https://doaj.org/article/ee72f89010d04c75b2cb9c10070c788d
https://paperity.org/p/85629270/real -time -anomaly -detection -for-very-short-term-load-forecasting
https://www.osti.gov/pages/biblio/1416032-real -time -anomaly -detection -very-short-term-load-forecasting
http://www.mpce.info/ch/reader/view_abstract.aspx?file_no=201802006&flag=1
https://link.springer.com/article/10.1007/s40565-017-0351-7
https://link.springer.com/content/pdf/10.1007%2Fs40565-017-0351-7.pdf
https://ieeexplore.ieee.org/abstract/document/9024711/ -
19
Autoren: et al.
Quelle: IEEE Access, Vol 6, Pp 9091-9098 (2018)
Schlagwörter: real-time anomaly detection, 0202 electrical engineering, electronic engineering, information engineering, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, In-vehicle network security, HTM algorithm, TK1-9971
Dateibeschreibung: application/pdf
Zugangs-URL: https://eprints.mdx.ac.uk/24573/1/08274979.pdf
https://doaj.org/article/b929a37865624fddbe1e1deca0b7da5d
https://ieeexplore.ieee.org/abstract/document/8274979/
https://dblp.uni-trier.de/db/journals/access/access6.html#WangZGZLC18
https://doi.org/10.1109/ACCESS.2018.2799210
https://ieeexplore.ieee.org/document/8274979/ -
20
Autoren: Arjun Mantri
Schlagwörter: Real-time anomaly detection, OTT streaming services, Machine learning, Spark Streaming, User activity monitoring
Relation: https://zenodo.org/records/13325634; oai:zenodo.org:13325634; https://doi.org/10.5281/zenodo.13325634
Full Text Finder
Nájsť tento článok vo Web of Science