Výsledky vyhledávání - "pseudo polynomial time algorithm"

  • Zobrazuji výsledky 1 - 15 z 15
Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Zdroj: [1990] Proceedings 11th Real-Time Systems Symposium. :32-40

    Popis souboru: application/xml

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Autoři: 王俊傑 Jun-Jay Wang 王炳豐 a další

    Přispěvatelé: 王俊傑 Jun-Jay Wang 王炳豐 a další

    Time: 2

    Popis souboru: 155 bytes; text/html

    Relation: [1] T. Bohman, A. M. Frieze, “Arc-disjoint Paths in Expander Digraphs,” SIAM Journal on Computing, vol. 32(2), pp. 326-344, 2003. [2] U. Brandes, G. Neyer and D. Wagner, “Edge-Disjoint Paths in Planar Graphs with Short Total Length,” Technical Report, Department of Computer and Information Science, University of Konstanz, 1996. [3] U. Brandes, D. Wagner, “A Linear Time Algorithm for the Arc Disjoint Menger Problem in Directed Planar Graphs,” Algorithmica, vol. 28(1), pp. 16-36, 2000. [4] A. Z. Broder, A. M. Frieze, S. Suen, E. Upfal, “An Efficient Algorithm for the Vertex-Disjoint Paths Problem in Random Graphs,” in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 261-268, 1996. [5] A. Z. Broder, A. M. Frieze, S. Suen, E. Upfal, “Optimal Construction of Edge-Disjoint Paths in Random Graphs,” SIAM Journal on Computing, vol. 28(2), pp. 541-573, 1998. [6] W. T. Chan, F. Y. L. Chin, “Efficient Algorithms for Finding the Maximum Number of Disjoint Paths in Grids,” Journal of Algorithms, vol. 34(2), pp.337-369, 2000. [7] W. T. Chan, F. Y. L. Chin, H. F.Ting, “Escaping a Grid by Edge-Disjoint Paths,” Algorithmica, vol. 36(4), pp. 343-359, 2003. [8] C. Chekuri, S. Khanna, “Edge Disjoint Paths Revisited,” in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.628-637, 2003. [9] T. Erlebach and K. Jansen, “The Maximum Edge-Disjoint Paths Problem in Bidirected Trees,” SIAM Journal on Discrete Mathematics, vol.14(3), pp. 326-355, 2001. [10] A. Frank, T. Ibaraki, H. Nagamochi, “Two Arc-Disjoint Paths in Eulerian Digraphs,” SIAM Journal on Discrete Mathematics, vol. 11(4), pp. 557-589, 1998. [11] A. M. Frieze, “Edge-Disjoint Paths in Expander Graphs,” SIAM Journal on Computing, vol. 30(6), pp.1790-1801, 2000. [12] J. S. Fu, G. H. Chen, D. R. Duh, “Node-disjoint Paths and Related Problems on Hierarchical Cubic Networks,” Networks, vol. 40(3), pp. 142-154, 2002. [13] Q. P. Gu, S. Peng, “Algorithms for Node Disjoint Paths in Incomplete Star Networks,” in Proceedings of the 1994 International Conference on Parallel and Distributed Systems, pp. 296-303. [14] Q.P. Gu, S. Peng, “An Efficient Algorithm for k-Pairwise Disjoint Paths in Star Graphs,” Information Processing Letters, vol. 67(6), pp. 283-287, 1998. [15] Qian-Ping Gu, Shietung Peng, “An Efficient Algorithm for the k-Pairwise Disjoint Paths Problem in Hypercubes,” Journal of Parallel Distributed Computing, vol. 60(6), pp. 764-774, 2000. [16] Q. P. Gu, H. Tamaki, “Routing a Permutation in the Hypercube by Two Sets of Edge Disjoint Paths,” Journal of Parallel Distributed Computing, vol. 44(2), pp. 147-152, 1997. [17] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, M. Yannakakis, “Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems,” Journal of Computer and System Science, vol. 67(3), pp. 473-496, 2003. [18] H. V. D. Holst and J. C. D. Pina, “Length-Bounded Disjoint Paths in Planar Graphs,” Discrete Applied Mathematics, vol. 120, pp. 251-261, 2002. [19] S. Khuller, S. G. Mitchell, V. V. Vazirani, “Processor Efficient Parallel Algorithms for the Two Disjoint Paths Problem and for Finding a Kuratowski Homeomorph,” SIAM Journal on Computing, vol. 21(3), pp. 486-506, 1992. [20] K. Kaneko, Y. Suzuki, “Node-to-Node Internally Disjoint Paths Problem in Bubble-Sort Graphs,” in Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing, pp. 173-182, 2004. [21] J. M. Kleinberg, É. Tardos, “Disjoint Paths in Densely Embedded Graphs,” in Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 52-61, 1995. [22] J. M. Kleinberg, E. Tardos, “Approximations for the Disjoint Paths Problem in High-Diameter Planar Networks,” Journal of Computer and System Science, vol. 57(1), pp. 61-73, 1998. [23] E. Korach, A. Tal, “General Vertex Disjoint Paths in Series-Parallel Graphs,” Discrete Applied Mathematics, vol. 41(2), pp. 147-164, 1993. [24] C. N. Lai, G. H. Chen, D. R. Duh, “Constructing One-to-Many Disjoint Paths in Folded Hypercubes,” IEEE Transactions on Computers, vol. 51(1), pp. 33-45, 2002. [25] C. Li, S. T. McCormick, D. Simchi-Levi, “The Complexity of Finding Paths with Min-Max Objective Function,” Discrete Applied Mathematics, vol. 26 pp. 105-115, 1990. [26] M. Middendorf, F. Pfeiffer, “On the complexity of the disjoint paths problems,” Combinatorica, vol. 13(1), pp. 97-107, 1993. [27] T. Nishizeki, J. Vygen, X. Zhou, “The edge-disjoint paths problem is NP-complete for series-parallel graphs,” Discrete Applied Mathematics, vol. 115(1-3), pp. 177-186, 2001. [28] H. Ripphausen-Lipa, D. Wagner and K. Weihe, “The Vertex-Disjoint Menger Problem in Planar Graphs,” SIAM Journal on Computing, vol. 26, pp. 331-349, 1997. [29] A. Schrijver, “Finding k Disjoint Paths in a Directed Planar Graph,” SIAM Journal on Computing, vol. 23, pp. 780-788, 1994. [30] A. Slivkins, “Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs,” in Proceedings of the 11th Annual European Symposium on Algorithms, pp. 482-493, 2003. [31] M. Y. Su, H. L. Huang, G. H. Chen, D. R. Duh, “Node-Disjoint paths in incomplete WK-recursive networks,” Parallel Computing, vol. 26(13-14):, pp. 1925-1944, 2000. [32] J. W. Suurballe and R.E. Tarjan, “A Quick Method for Finding Shortest Pairs of Disjoint Paths,” Networks, vol 14, pp. 325-336, 1984. [33] K. R. Varadarajan, G. Venkataraman, “Graph decomposition and a greedy algorithm for edge-disjoint paths,” in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 379-380, 2004. [34] J. Vygen, “NP-completeness of some edge-disjoint paths problems,” Discrete Applied Mathematics, vol. 61, pp.83-90, 1995. [35] D. Wagner and K. Weihe, “A Linear-Time Algorithm for Edge-Disjoint Paths in Planar Graphs,” Combinatorica, vol 15 (1), pp. 135-150, 1995. [36] K. Weihe, ”Edge-Disjoint (s,t)-Paths in Undirected Planar Graphs in Linear Time,” Journal of Algorithms, vol. 23, pp. 121-138, 1997. [37] H. Yinnone, “Maximum Number of Disjoint Paths Connecting Specified Terminals in a Graph,” Discrete Applied Mathematics, vol. 55(2), pp. 183-195, 1994. [38] X. Zhou, S. Tamura, T. Nishizeki, “Finding Edge-Disjoint Paths in Partial k-Trees,” Algorithmica, vol. 26(1), pp. 3-30, 2000.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/34224