Výsledky vyhľadávania - "numerical approximation of high-dimensional functions"
-
1
Autori:
Zdroj: Foundations of Data Science. 7:72-98
Predmety: FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Numerical approximation of high-dimensional functions, sparse grids, Numerical Analysis (math.NA), Theoretical approximation in context of PDEs, 01 natural sciences, parametrized PDEs, Machine Learning (cs.LG), convolutional autoencoders, Artificial Intelligence (cs.AI), FOS: Mathematics, Mathematics - Numerical Analysis, 0101 mathematics, approximation theory, reduced order modeling, Artificial neural networks and deep learning, neural network training
Popis súboru: application/xml
Prístupová URL adresa: http://arxiv.org/abs/2402.00435
-
2
Autori: Yserentant, Harry
Zdroj: Numerische Mathematik. 156:777-811
Predmety: convergence, boundary value problems, 500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik, Numerical Analysis (math.NA), stability, numerical approximation of high-dimensional functions, multidimensional problems, 01 natural sciences, 41A46, 41A63, 65D40, 65N12, numerical methods, FOS: Mathematics, approximation by arbitrary nonlinear expressions, Mathematics - Numerical Analysis, 0101 mathematics, PDEs
Prístupová URL adresa: http://arxiv.org/abs/2403.00682
-
3
Autori:
Zdroj: Journal of Numerical Mathematics. 33:87-104
Predmety: many-body interaction, Measures of association (correlation, canonical correlation, etc.), Multilinear algebra, tensor calculus, 0103 physical sciences, symmetric tensors, FOS: Mathematics, Numerical approximation of high-dimensional functions, sparse grids, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 01 natural sciences, cluster expansion
Popis súboru: application/xml
Prístupová URL adresa: http://arxiv.org/abs/2202.04140
-
4
Autori:
Zdroj: Journal of Complexity. 89:101933
Predmety: pointwise samples, Approximation by polynomials, Complexity and performance of numerical algorithms, 65D40, 41A10, 41A63, 65Y20, 41A25, Multidimensional problems, holomorphic functions, FOS: Mathematics, Numerical approximation of high-dimensional functions, sparse grids, information complexity, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), high-dimensional approximation
Popis súboru: application/xml
Prístupová URL adresa: http://arxiv.org/abs/2310.16940
-
5
Autori: Yserentant, Harry
Predmety: 500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik, approximation by arbitrary nonlinear expressions, multidimensional problems, numerical approximation of high-dimensional functions, stability, numerical methods, PDEs, boundary value problems, convergence
Popis súboru: application/pdf
-
6
Autori: Ziqi Wang
Zdroj: Journal of Computational Physics. 523:113668
Predmety: physics-based surrogate modeling, uncertainty quantification, Physics - Data Analysis, Statistics and Probability, FOS: Physical sciences, Numerical approximation of high-dimensional functions, sparse grids, high-dimensional regression, Data Analysis, Statistics and Probability (physics.data-an), Probabilistic models, generic numerical methods in probability and statistics
Popis súboru: application/xml; application/pdf
-
7
Autori: a ďalší
Zdroj: Computer Methods in Applied Mechanics and Engineering. 434:117581
Predmety: FOS: Computer and information sciences, Computer Science - Machine Learning, Applications of functional analysis in optimization, convex analysis, mathematical programming, economics, Gaussian processes, Numerical approximation of high-dimensional functions, sparse grids, neural operators, Machine Learning (stat.ML), Machine Learning (cs.LG), operator learning, KdV equations (Korteweg-de Vries equations), Statistics - Machine Learning, Initial-boundary value problems for second-order parabolic equations, optimal recovery, Nonparametric regression and quantile regression, zero-shot learning, Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs, Artificial neural networks and deep learning
Popis súboru: application/xml
-
8
Autori:
Zdroj: submitted to Journal of Computational Physics
Predmety: polytopic LPV system, FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Numerical approximation of high-dimensional functions, sparse grids, Dynamical Systems (math.DS), Numerical methods for initial value problems involving ordinary differential equations, Machine Learning (cs.LG), convolutional autoencoders, model order reduction, Numerical methods for matrix equations, convex polytope, FOS: Mathematics, linear parameter-varying (LPV) systems, Mathematics - Dynamical Systems, Artificial neural networks and deep learning, clustering
Popis súboru: application/xml; application/xhtml+xml
-
9
Autori: a ďalší
Zdroj: Neural Networks. 181:106761
Predmety: uncertainty quantification, 65D40 (Primary) 68T07 (Secondary) 68Q32, Computational learning theory, deep learning, Numerical approximation of high-dimensional functions, sparse grids, Numerical Analysis (math.NA), 01 natural sciences, Banach spaces, Deep Learning, deep neural networks, FOS: Mathematics, Humans, Mathematics - Numerical Analysis, Neural Networks, Computer, high-dimensional approximation, 0101 mathematics, Algorithms, Artificial neural networks and deep learning
Popis súboru: application/xml
-
10
Autori:
Zdroj: Computational and Applied Mathematics. 43
Predmety: overlap function, Fuzzy control/observation systems, universal approximation, Numerical approximation of high-dimensional functions, sparse grids, vague partition, approximation accuracy, interval type-2 fuzzy system
Popis súboru: application/xml
Prístupová URL adresa: https://zbmath.org/7846885
https://doi.org/10.1007/s40314-024-02629-2 -
11
Autori: a ďalší
Zdroj: Journal of Computational Physics. 510:113089
Predmety: FOS: Computer and information sciences, Numerical optimization and variational techniques, Computer Science - Machine Learning, uncertainty quantification, information bottleneck, Numerical approximation of high-dimensional functions, sparse grids, Monte Carlo methods, 02 engineering and technology, Numerical Analysis (math.NA), Machine Learning (cs.LG), operator learning, deep neural networks, 13. Climate action, 0202 electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Mathematics - Numerical Analysis, Artificial neural networks and deep learning
Popis súboru: application/xml
-
12
Autori:
Zdroj: Journal of Computational Physics. 510:113070
Predmety: Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Numerical approximation of high-dimensional functions, sparse grids, fluid dynamics, Physics - Fluid Dynamics, Dynamical Systems (math.DS), Computational Physics (physics.comp-ph), Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, quantum computing, reduced-order modeling, Quantum computation, 0103 physical sciences, FOS: Mathematics, dynamic mode decomposition, Mathematics - Dynamical Systems, Physics - Computational Physics, vortex-dominated flows
Popis súboru: application/xml
Prístupová URL adresa: http://arxiv.org/abs/2306.08087
-
13
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Journal of Computational PhysicsPredmety: Hysteresis, ECM hyper-reduction, Proper Orthogonal Decomposition, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Numerical approximation of high-dimensional functions, sparse grids, Geometric Parametrisation, ECM Hyper-reduction, Physics - Fluid Dynamics, Àrees temàtiques de la UPC::Física::Física de fluids, proper orthogonal decomposition, Coanda effect, hysteresis, Coanda Effect, geometric parametrisation, Mecànica de fluids, Fluid mechanics, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, Finite element methods applied to problems in fluid mechanics, Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Popis súboru: application/pdf; application/xml
-
14
Autori:
Zdroj: Journal of Computational Physics. 510:113069
Predmety: FOS: Computer and information sciences, Numerical optimization and variational techniques, uncertainty quantification, Numerical approximation of high-dimensional functions, sparse grids, Statistics - Computation, Statistics - Applications, surrogate modeling, Probabilistic models, generic numerical methods in probability and statistics, rare event simulation, importance sampling, high-dimensional, active learning, Applications (stat.AP), Computation (stat.CO)
Popis súboru: application/xml
Nájsť tento článok vo Web of Science
Full Text Finder