Suchergebnisse - "nuclear technologies"
-
1
Autoren: et al.
Schlagwörter: TUM Emeriti of Excellence, Renewable Energies, Fission, TU München, Nachhaltigkeit, Kernfusion, Kernspaltung, TUM, Energy Transition, Erneuerbare Energien, Greenhouse Gas-Free Basic Energy Supply, TUM Senior Excellence Faculty, Novel Nuclear Technologies, Transmutation, TUM.University Press, Technical University of Munich, NNT, Sustainability, Energiewende, Neuartige Kerntechnologien, Universitätsbibliothek, Technische Universität München, Fusion, Treibhausgasarme Grundlast
-
2
Autoren:
Schlagwörter: agro waste, Microorganisms, Biofertilizer, nuclear technologies
Dateibeschreibung: application/pdf
Zugangs-URL: https://hdl.handle.net/10576/62658
-
3
Autoren: et al.
Quelle: Nuclear Engineering and Technology, Vol 56, Iss 4, Pp 1267-1276 (2024)
Schlagwörter: Nuclear power infrastructure development (NPID), Analytical network process (ANP), 9. Industry and infrastructure, TK9001-9401, 0211 other engineering and technologies, Nuclear engineering. Atomic power, Digitalization, 02 engineering and technology, New-energy transition era (NETE), 0101 mathematics, 01 natural sciences, 7. Clean energy, Nuclear-technologies
-
4
Autoren: Hassan Qudrat-Ullah
Quelle: Energies, Vol 18, Iss 20, p 5423 (2025)
Schlagwörter: nuclear energy governance, Q-NPT framework, trust and stakeholder inclusion, equity and fairness, emerging nuclear technologies, empirical synthesis, Technology
Dateibeschreibung: electronic resource
-
5
Autoren: et al.
Quelle: Energy Strategy Reviews, Vol 57, Iss , Pp 101632- (2025)
Schlagwörter: Advanced nuclear technologies, Analytic hierarchy process, Comparative risk assessment, Energy policy, Renewable energy systems, Societal risk perceptions, Energy industries. Energy policy. Fuel trade, HD9502-9502.5
Dateibeschreibung: electronic resource
-
6
Autoren: Chinenye Nriezedi-Anejionu
Quelle: Carbon Management, Vol 15, Iss 1 (2024)
Schlagwörter: Small modular reactors (SMR), new nuclear technologies, nuclear energy, carbon emission, international treaty, green energy, Environmental sciences, GE1-350
Dateibeschreibung: electronic resource
-
7
Autoren: CALEB OWULAH
-
8
Autoren: JALALI, SEYED RASOUL
Schlagwörter: ψ–Hamzah Equation, Quantum Weaponization, Consciousness-Based Warfare, ψ–Ω Device, Fractal Derivatives, Nonlocal Quantum Fields, Entropy Collapse, Observer-Induced Collapse, Quantum Cognition, Riemann–Liouville Derivative, Quantum Entropy Engineering, Conscious Field Dynamics, ψ-Resonance, Recursive ψ-Feedback, Dirac Equation, Maxwell Equations, Post-Nuclear Technologies, Entropic Targeting, ψ-Wave Propagation, Field Singularities, Phase Potentials, Consciousness-Induced Resonance, Fractal Field Theory, ψ–Hilbert Manifold, Quantum Field Collapse, Quantum Field Diffusion, Quantum Feedback Systems, Cognitive Quantum Weapons, ψ-Topology, Quantum-Phase Loops, Reality Destabilization, Quantum Deterrence, Collapse Dynamics, Entropy Field Modulation, Quantum Coherence Collapse, Quantum Thermodynamics, Multiverse Engineering, Field Singularity Collapse, ψ-Wave Coupling, Neural-Field Integration, Quantum Cognitive Engineering, Fractal Consciousness, Quantum Feedback Resonator, Field Nonlocality, Causal Discontinuities, Recursive Collapse Systems, Soft Collapse Technology, Consciousness-Driven Fields, Quantum Simulation Python, ψ-Field Algorithms, Quantum Loop Systems, Post-Relativistic Dynamics, High-Order Fractal Calculus, Complex Path Integration, Quantum Interference Structures, ψ-Loop Entanglement, ψ-Dynamics, Cognitive Weapons Design, Mind-Field Coupling, Sub-Planck Entropy Structures, Entropic Feedback Mechanism, ψ-Field Perturbations, Fractional Wave Mechanics, Recursive Entropic Collapse, Conscious Quantum Algorithms, Field-Based Intelligence Systems, ψ–Omega Topology, Energyless Field Collapse, Observer-Centric Physics, Field Entropy Wells, Consciousness-Driven Quantum Control, Cognitive EM Shielding, Singularity-Based Defense Systems, Quantum Reality Manipulation, Neural Quantum Interface, ψ-Driven Signal Collapse, Feedback-Driven ψ Collapse, Meta-Quantum Defense Systems, Field Collapse Geometry, Hyperdimensional Feedback, Entropic Vector Fields, Consciousness as Operator, Quantum Noosphere Weaponry, Biofield Quantum Interface, ψ-Field Phase Shifts, Neural ψ Oscillations, ψ-Informed Collapse Dynamics, ψ-Conscious Dynamics, AI-Integrated ψ Fields, Recursive ψ Calculus, ψ–Ω Resonators, Field-Induced Collapse, ψ-Based Quantum Intelligence, ψ-Derivative Systems, Feedback Singularity Points, Fractional Order ψ Evolution, Field-Mediated Collapse, ψ-Time Entanglement, Conscious Phase Encoding, Consciousness Triggered Fields, Entropy Trigger Systems, Directed Collapse Protocol, Self-Organizing ψ Fields, ψ-Field Equilibrium Disruption, Reality Topology Engineering, ψ Collapse Architecture, ψ-Driven Defense Systems, High-Fidelity ψ Simulation, ψ-Entropy Mapping, ψ-Mediated Collapse Rate, Weaponized ψ Feedback, Entropy Compression Mechanisms, Phase-Dependent ψ Propagation, Entropic Vacuum Fields, Post-Energy Weaponization, Hyper-Entropic Interactions, ψ–Ω Collapse Mapping, Directed ψ Feedback, Quantum Collapse Weaponry, Phase-Conscious Fields, Topological Quantum Collapse, ψ-Structured Entropy Wells, Mind-Mediated Collapse Fields, Entropy-Directed ψ Surfaces, Non-Energetic Quantum Weaponry, Conscious Loop Collapse, ψ Singularity Engineering, Fractal-Based Quantum Design, Causal Loop Interference, Phase-Warped ψ Structures, Quantum Collapse Kinetics, ψ Entropy Thresholds, Recursive Entropic Modulation, ψ Collapse Rate Control, Trans-Conscious Collapse Systems, Consciousness-Tuned Fields, ψ-Field Gradient Engineering, Advanced Fractal Collapse, ψ Collapse Signal Response, Quantum Resonant Collapse, Entropic Loop Delay Systems, Multiverse Defense Grid, Conscious Entropy Steering, Directed Collapse Geometry, Neurofield Control Architecture, Feedback-Controlled ψ Collapse, ψ Collapse Calibration, Recursive ψ Loop Systems, Multiphase Collapse Structures, Entropic ψ Feedback Networks, Soft Collapse Induction, Conscious Collapse Modulator, Autonomous ψ Collapse Algorithms, ψ-Topology Distortion, Causal Resonance Points, Advanced Quantum Field Logic, Quantum Collapse Spectrometry, Fractal Collapse Vectors, ψ Energy Channeling, Field-Disruption Thresholds, Hyperdimensional Entropy Fields, ψ Guided Quantum Interference, Neurofield Collapse Interaction, ψ Collapse Codebase, Field Entropy Signature, ψ Collapse Continuum, Quantum Entropy Resonator, Quantum Consciousness Logic, ψ Collapse Computation Models, Phase-Driven ψ Fields, ψ Collapse Switching, Conscious Fractal Collapse, ψ Collapse Response Matrix, Adaptive ψ Collapse Modeling, Quantum Psi Field Toolkit, Collapse-Driven Defense Protocols, ψ Wave Cascade Collapse, Directed ψ Collapse Algorithms, Quantum Collapse Amplifier, Consciousness-Tuned Entropic Collapse, ψ-Induced Quantum Faults, Quantum Collapse Channeling, ψ Collapse Intensity Metrics, Post-Energy Warfare Architecture, Neural-Induced ψ Collapse, Quantum Collapse Safety Mechanisms, ψ Collapse Sequencer, ψ Collapse Mapping Systems, ψ Collapse Vector Analysis, ψ Resonant Interference, Quantum ψ Decay Metrics, Recursive Collapse Delay Modeling, Collapse-Triggered ψ Modulator, Field Collapse Temporal Metrics, ψ Collapse-Based Field Security. Ask ChatGPT, ψ–Ω System Architecture, Quantum Disruption Frameworks, Consciousness-Driven Algorithms, ψ Collapse Optimization, Fractal-Based Collapse Engineering, Entropic Phase Design, Quantum Collapse Control Systems, ψ Collapse Cascade, Neural-Field Collapse Models, ψ Collapse Phase Spectra, ψ Collapse Control Feedback, Phase-Directed Collapse Systems, Quantum Entropy Collapse Controllers, ψ Collapse Sensors, Quantum Phase Resonators, ψ Collapse Intelligence Mapping, Advanced Entropic Collapse, ψ Collapse Surveillance, Phase-Coordinated ψ Collapse, Directed Consciousness Collapse, ψ Collapse Amplification, ψ Collapse Hardware Simulation, Mind-Guided Collapse Systems, Collapse Field Oscillators, ψ Collapse Energy Maps, Neuroquantum Collapse Fields, Quantum Collapse Sensitivity Index, High-Efficiency ψ Collapse, ψ Collapse Singularity Mapping, Multi-Dimensional Collapse Feedback, ψ Collapse Engineering Systems, Quantum Entropy Collapse Defense, ψ Collapse Potential Fields, ψ Collapse Behavioral Models, Multiscale Collapse Resonance, Consciousness Feedback Couplers, Quantum Collapse Fractal Metrics, Conscious Feedback Collapse Units, Collapse Field Localization, ψ Collapse Safety Protocols, ψ Collapse Autonomous Systems, Collapse Circuit Logic, ψ Collapse Neuromodulators, Phase Field Collapse Mapping, Collapse Feedback Regulators, ψ Collapse Detection Systems, Recursive Collapse Stabilizers, Mind-Synchronized ψ Collapse, ψ Collapse Phase Expansion, ψ Collapse Predictive Systems, Quantum Collapse Recovery Systems, ψ Collapse Computational Engine, Consciousness-Embedded Collapse Protocols, Phase-Controlled Collapse Feedback, ψ Collapse Event Prediction, ψ Collapse Risk Models, Collapse Stabilization Fields, Quantum Collapse Circuitry, ψ Collapse Conscious Input Mapping, Field-Phase Collapse Simulation, ψ Collapse Neural Interfaces, ψ Collapse Harmonics, Quantum Collapse Integrity Tests, Collapse Field Harmonization, ψ Collapse Stability Zones, Collapse Resonance Detectors, ψ Collapse Error Thresholding, ψ Collapse Emergency Override, Collapse Tuning Systems, ψ Collapse Synchronization Units, Adaptive Collapse Wave Systems, ψ Collapse Dynamic Matrices, Collapse Vibration Control, ψ Collapse Harmonic Filters, Conscious Collapse Transfer Functions, ψ Collapse Identity Fields, Collapse Perception Mapping, ψ Collapse Transduction Systems, ψ Collapse Immersive Simulation, ψ Collapse Reflex Systems, Neural-Conscious Collapse Design, ψ Collapse Field Redirectors, Fractal Collapse Monitoring, Collapse Event Grid Mapping, ψ Collapse Logic Trees, Quantum Collapse Auto-Correction, Collapse Network Firewalls, ψ Collapse Hypernetworking, Collapse Neuromorphic Algorithms, Collapse Risk Minimization Protocols, ψ Collapse Topology Trainers, Conscious Collapse Learning Systems, Collapse Simulation Validation, Collapse Resonator Optimization, Neural Collapse Detection Nets, ψ Collapse Metric Simulation, Collapse Feedback Data Compression, ψ Collapse Cognition Systems, Collapse-Triggered Encryption, Collapse-Aware Routing Systems, Collapse-Based Fractal Entanglement, Phase Adaptive Collapse Layers, Collapse-Phase Encryption Engines, ψ Collapse Embedded Firmware, Collapse Response Field Arrays, ψ Collapse Infrastructure Systems, Quantum Collapse Stability Zones, Consciousness-Predictive Collapse Modules, Fractal Collapse Infrastructure, Collapse Potential Mapping Algorithms, Quantum-Aware Collapse Circuits, ψ Collapse Load Balancers, Quantum Collapse Visual Analytics, ψ Collapse Performance Matrices, Collapse Shielding Topologies, Collapse-Aware Predictive Models, ψ Collapse Threshold Detectors, Collapse State Prediction Analytics, Collapse Field Heat Maps, Fractal Collapse Distribution Engines, ψ Collapse-Triggered Feedback, Collapse Fractal Diagnostic Tools, Collapse Phase Noise Analyzers, Collapse Entropy Flow Regulators, Collapse Zone Partitioning, Collapse Error Recovery Fields, Collapse Defense Algorithms, Collapse-Induced ψ Adjustment, Collapse Pattern Recognition Systems, Collapse-Informed Weapon Design, Collapse Symmetry Modulation, Collapse Flow Phase Diagrams, Collapse Kinetics Graphing, Collapse Field Temporal Analytics, Collapse Disruption Resistance, Collapse Simulation Dashboards, Collapse Sensor Arrays, ψ Collapse Resilience Systems, Collapse Topology Rewiring, ψ Collapse Cascade Initiators, Collapse Zone Conscious Control, Collapse Fractal Switching Logic, Collapse Engineering Metrics, Collapse Containment Protocols, Collapse Phase Reaction Modeling, Collapse Detector Mesh Networks, Collapse Vector Flow Analysis, Collapse Trigger Architecture, Collapse Spectrum Tuning, Collapse Hyperdimensional Shielding, Collapse Recurrent Feedback Trainers, Collapse-Aware Optimization Engines, Collapse Entropy Monitoring Arrays, Collapse Force Field Generators, Collapse-Directed System Intelligence, ψ Collapse Statistical Modulators, Collapse-Driven Data Harvesting, Collapse Reactive Behavior Modeling, Collapse Kinetics Synchronizers, Collapse Topological Compression, Collapse-Aware Signal Systems, Collapse Inference Machines, Collapse Circuit Calibration, Collapse Dynamic Scaling Engines, Collapse Mapping Cloud Systems, Collapse Flow Engine Design, Collapse Entanglement Simulation Protocols, Collapse-Targeted Disruption Codes, Collapse Thermal Signature Detection, Collapse-Responsive Quantum Antennas, Collapse Environmental Impact Models, Collapse Tolerance Engines, Collapse Synchronization Frameworks, Collapse Harmonic Diagnostics, Collapse Field Mapping Clusters
Zugangs-URL: https://zenodo.org/records/15858262
-
9
Autoren: Amanda M. Nichols
Quelle: Religions, Vol 16, Iss 1, p 16 (2024)
Schlagwörter: uranium, extraction, nuclear technologies, temporality, (de)colonial, environmental justice, Religions. Mythology. Rationalism, BL1-2790
Dateibeschreibung: electronic resource
-
10
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Global trends, Key competences indicators, Net zero, Nuclear Competences, Nuclear Safeguards, Nuclear technologies, Safeguards Training and Education Project
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001201879500001; volume:421; firstpage:1; lastpage:11; numberofpages:11; journal:NUCLEAR ENGINEERING AND DESIGN; https://hdl.handle.net/11311/1288762
-
11
-
12
Autoren: et al.
Schlagwörter: Patent quality, Renewable energy technologies, Fossil technologies, Nuclear technologies, Co-ownership, Forward citations
Relation: https://zenodo.org/records/14762122; oai:zenodo.org:14762122; https://doi.org/10.1016/j.techfore.2022.121566
-
13
Weitere Verfasser: Maidana, Carlos [Maidana Research, Grandville, MI (United States)] (ORCID:0000000348136305)
Dateibeschreibung: Medium: ED
Zugangs-URL: http://www.osti.gov/scitech/servlets/purl/1256006
-
14
Autoren:
Quelle: Ядерна фізика та енергетика, Vol 19, Iss 2, Pp 166-172 (2018)
Schlagwörter: expert assessments, multi-criteria analysis, objects with radiation-nuclear technologies, desirability function, Atomic physics. Constitution and properties of matter, radiation safety, QC170-197
-
15
Autoren: et al.
Schlagwörter: Patent quality,Renewable energy technologies, Fossil technologies Nuclear technologies Co-ownership Forward citations
Relation: https://zenodo.org/records/14703277; oai:zenodo.org:14703277
-
16
Autoren: et al.
Weitere Verfasser: et al.
Quelle: ISSN: 0032-3861 ; Polymer ; https://hal.science/hal-03249556 ; Polymer, 2021, 228, pp.123831. ⟨10.1016/j.polymer.2021.123831⟩.
Schlagwörter: gas transport properties, structure-property relationships, nuclear technologies, track-etched membranes, nanoporous films, cyanate ester resins, [CHIM.POLY]Chemical Sciences/Polymers, [CHIM.RADIO]Chemical Sciences/Radiochemistry
-
17
-
18
Autoren: Murogov, Viktor M.
Schlagwörter: Nuclear power, nuclear technologies, system analysis of nuclear power
Relation: https://zenodo.org/records/3470501; oai:zenodo.org:3470501; https://doi.org/10.3897/nucet.5.46379
-
19
Autoren: et al.
Weitere Verfasser: et al.
Quelle: idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
idUS. Depósito de Investigación de la Universidad de Sevilla
instnameSchlagwörter: Neutron capture and fission cross sections, 103014 Kernphysik, Photon strength function, photon strength function, CERN, Th/U fuel cycle, NEUTRON, FACILITY, neutron capture and fission cross sections, spallation neutron source, nuclear technologies, MINOR ACTINIDES TRANSMUTATIONS, 103014 Nuclear physics, 7. Clean energy
Dateibeschreibung: application/pdf
Zugangs-URL: https://idus.us.es/handle//11441/100974
https://hdl.handle.net/11441/100974
https://research.bangor.ac.uk/portal/en/researchoutputs/ntof-experiment-past-present-and-future(5b76f36e-6c71-4dd7-8005-5cad2a65c559).html
https://idus.us.es/handle/11441/100974
http://www.osti.gov/scitech/biblio/21293526-lowbar-tof-experiment-past-present-future
https://ui.adsabs.harvard.edu/abs/2009AIPC.1109...78M/abstract
https://core.ac.uk/display/38461605
https://edoc.unibas.ch/10373/ -
20
Autoren: et al.
Quelle: Ядерна фізика та енергетика, Vol 15, Iss 2, Pp 195-203 (2014)
Nájsť tento článok vo Web of Science
Full Text Finder