Suchergebnisse - "multilayer perceptron neural networks"
-
1
Autoren:
Quelle: Management and Economics Review, Vol 8, Iss 3, Pp 276-288 (2023)
-
2
Autoren:
Quelle: Journal of the American Statistical Association. :1-14
Schlagwörter: FOS: Computer and information sciences, 0301 basic medicine, directed acrylic graph, Computer Science - Machine Learning, R01AG062542, Machine Learning (stat.ML), 01 natural sciences, R01AG061303, Machine Learning (cs.LG), 03 medical and health sciences, Hypothesis testing, EP/W014971/1, Statistics - Machine Learning, hypothesis testing, brain connectivity networks, generative adversarial networks, 0101 mathematics, multilayer perceptron neural networks, CIF-2102227
-
3
Autoren:
Quelle: Scientific Reports, Vol 14, Iss 1, Pp 1-16 (2024)
Schlagwörter: Penetration rate prediction, The Rock Mass Drillability Index (RDi), Traditional models, Multilayer perceptron neural networks (MLP), Support Vector Regression (SVR), Random Forests (RF), Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
4
Autoren: et al.
Quelle: Reviews on Advanced Materials Science, Vol 63, Iss 1, Pp pp. 5478-5487 (2024)
Schlagwörter: rheological properties, alkali-activated concrete, multilayer perceptron neural networks, Technology, Chemical technology, TP1-1185
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1605-8127
-
5
Autoren:
Quelle: Energy Science & Engineering, Vol 10, Iss 6, Pp 1902-1912 (2022)
-
6
Autoren:
Quelle: Journal of Business Research , 182 , Article 114788. (2024)
Schlagwörter: Cognitive analytics, RAI, Responsibility of innovation, Business Model Innovation (BMI), Healthcare, Stakeholders, Multilayer Perceptron Neural Networks (MLP NN)
Dateibeschreibung: text
Relation: https://discovery.ucl.ac.uk/id/eprint/10196956/2/Kanungo_%20Cognitive%20analytics%20enabled%20responsible%20artificial%20intelligence%20for%20business%20model%20innovation_AAM.pdf; https://discovery.ucl.ac.uk/id/eprint/10196956/
-
7
Autoren: et al.
Quelle: European Journal of Remote Sensing, Vol 56, Iss 1 (2023)
Schlagwörter: Urban land-use land-cover, Gradient tree boosting, Random forest, Support vector machine, Multilayer perceptron neural networks, Post-classification feature fusion, Oceanography, GC1-1581, Geology, QE1-996.5
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2279-7254
-
8
Autoren:
Quelle: International Journal of Energy Research. 45:453-477
Schlagwörter: intelligent solar tracking systems, photovoltaic, dual-axis, cascade multilayer perceptron, linear regression, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, horizontal single-axis, 02 engineering and technology, 7. Clean energy, multilayer perceptron neural networks
Dateibeschreibung: application/pdf
-
9
Autoren: et al.
Quelle: Front Nutr
Frontiers in Nutrition, Vol 9 (2023)Schlagwörter: 2. Zero hunger, combined data, 0404 agricultural biotechnology, Nutrition. Foods and food supply, multilayer perceptron neural networks analysis, e-tongue, instant starch noodles seasonings, TX341-641, e-nose, 04 agricultural and veterinary sciences, Nutrition
-
10
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Wetlands. 40:179-192
Schlagwörter: Multilayer perceptron neural networks, [SDE] Environmental Sciences, Damaged ecosystems, Uncertainty, Remote sensing, 15. Life on land, Wetland restoration, 01 natural sciences, 6. Clean water, 13. Climate action, [SDE]Environmental Sciences, 0105 earth and related environmental sciences
-
11
Autoren:
Quelle: Ecological Indicators, Vol 127, Iss , Pp 107735- (2021)
Schlagwörter: Wildfire susceptibility, Convolutional neural network, Multilayer perceptron neural networks, Artificial neural networks, Interpretability, Ecology, QH540-549.5
Dateibeschreibung: electronic resource
-
12
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Apple Orchards,Convolutional Neural Networks, Decision Trees, Machine Learning, Multilayer Perceptron Neural Networks
Relation: https://zenodo.org/records/5412797; oai:zenodo.org:5412797; https://doi.org/10.35940/ijeat.F3040.0810621
-
13
Autoren:
Weitere Verfasser:
Schlagwörter: linear regression, cascade multilayer perceptron, dual-axis, horizontal single-axis, intelligent solar tracking systems, multilayer perceptron neural networks, photovoltaic
Dateibeschreibung: application/pdf
Relation: International Journal of Energy Research; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://hdl.handle.net/11363/5561; 45; 453; 477
Verfügbarkeit: https://hdl.handle.net/11363/5561
-
14
Autoren: et al.
Quelle: Water ; Volume 11 ; Issue 10 ; Pages: 2116
Schlagwörter: Flash-Flood Potential Index, Flood Potential Index, bivariate model, frequency ratio, Multilayer Perceptron Neural Networks, hybrid model
Geographisches Schlagwort: agris
Dateibeschreibung: application/pdf
Relation: Hydrology; https://dx.doi.org/10.3390/w11102116
Verfügbarkeit: https://doi.org/10.3390/w11102116
-
15
Autoren: et al.
Weitere Verfasser: et al.
Quelle: 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA). :217-221
Schlagwörter: [INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, Multilayer Perceptron Neural Networks, Cross-Validation, 0202 electrical engineering, electronic engineering, information engineering, Osteoporosis, 02 engineering and technology, Texture features, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Zugangs-URL: https://hal.science/hal-00768823v1
https://dblp.uni-trier.de/db/conf/ipta/ipta2012.html#HarrarHALJ12
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/2266
https://ieeexplore.ieee.org/document/6469528/
http://ieeexplore.ieee.org/document/6469528/
http://dblp.uni-trier.de/db/conf/ipta/ipta2012.html#HarrarHALJ12 -
16
Autoren:
Quelle: 2012 20th Signal Processing and Communications Applications Conference (SIU). :1-4
Schlagwörter: 2. Zero hunger, Texture Feature Vector, Agricultural Crops, MLP Neural Networks, Multilayer Perceptron Neural Networks, Network Structures, 0211 other engineering and technologies, K-Nearest Neighbors, 02 engineering and technology, Agricultural Land, 15. Life on land, Feature Vectors, Gabor Wavelet Transforms, 0202 electrical engineering, electronic engineering, information engineering, Texture Extraction
Dateibeschreibung: application/pdf
Zugangs-URL: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000006204755
http://ieeexplore.ieee.org/document/6204755/
https://dblp.uni-trier.de/db/conf/siu/siu2012.html#AcarO12
https://ieeexplore.ieee.org/document/6204755/
http://earsiv.batman.edu.tr/handle/20.500.12402/2070?locale-attribute=tr
https://hdl.handle.net/20.500.12402/2070 -
17
Autoren: et al.
Quelle: علوم و مهندسی آبیاری, Vol 38, Iss 4, Pp 75-85 (2016)
Schlagwörter: reference evapotranspiration, radial basis function networks, multilayer perceptron neural networks, time series models, Hydraulic engineering, TC1-978, Irrigation engineering. Reclamation of wasteland. Drainage, TC801-978
Dateibeschreibung: electronic resource
-
18
Autoren:
Quelle: Pattern Recognition Letters. 25:1491-1500
Schlagwörter: Change detection, Detection of land-cover transitions, Expectation-maximization algorithm, k-nn technique, Multilayer perceptron neural networks, Multiple classifier systems, Multitemporal classification, Radial basis function neural networks, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 15. Life on land
-
19
Autoren: et al.
Quelle: Journal of the Brazilian Chemical Society v.22 n.1 2011
Journal of the Brazilian Chemical Society
Sociedade Brasileira de Química (SBQ)
instacron:SBQ
Journal of the Brazilian Chemical Society, Volume: 22, Issue: 1, Pages: 142-147, Published: JAN 2011Schlagwörter: 2. Zero hunger, re-sampling, phytosterols, 02 engineering and technology, 0210 nano-technology, multilayer perceptron neural networks, fatty acids, 01 natural sciences, 0104 chemical sciences
Dateibeschreibung: text/html
Zugangs-URL: http://www.scielo.br/pdf/jbchs/v22n1/19.pdf
https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000100019&lng=pt&tlng=en
http://www.scielo.br/pdf/jbchs/v22n1/19.pdf
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000100019
http://www.scielo.br/j/jbchs/a/MhC9TNpbNzGSkbQkHwfVmsw/
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/44098/1/JBCS.pdf
http://www.alice.cnptia.embrapa.br/bitstream/doc/903708/1/JBCS.pdf
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000100019
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000100019&lng=en&tlng=en -
20
Autoren:
Quelle: Journal of Fusion Energy. 27:278-284
Schlagwörter: multilayer perceptron neural networks (MLPNNs), 0103 physical sciences, 0202 electrical engineering, electronic engineering, information engineering, neutronic parameters, 02 engineering and technology, 01 natural sciences, 7. Clean energy, least mean squares (LMS) algorithm, hybrid reactor
Nájsť tento článok vo Web of Science
Full Text Finder