Výsledky vyhledávání - "multi-objective integer programming model"
-
1
Autoři:
Zdroj: مدیریت تولید و عملیات, Vol 13, Iss 2, Pp 1-21 (2022)
Témata: assignment, multi-objective integer programming model, topsis, senior staffs, preferences, satisfaction, Management. Industrial management, HD28-70, Production management. Operations management, TS155-194
Popis souboru: electronic resource
Relation: https://jpom.ui.ac.ir/article_26554_2523e89b200abe0585fd153685ae946b.pdf; https://doaj.org/toc/2423-6950
Přístupová URL adresa: https://doaj.org/article/df9141012a6a45ac9ea313038ccd0b77
-
2
Autoři: a další
Zdroj: International Journal of Mathematical, Engineering and Management Sciences, Vol 5, Iss 6, Pp 1249-1269 (2020)
Témata: exact and approximate methods for ranked-optimal solutions, Technology, multi-objective integer programming model, non-dominated point set, k-ranked optimal solutions, QA1-939, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, rank-based solution method, 02 engineering and technology, Mathematics
Přístupová URL adresa: https://doaj.org/article/f942c0c76e5b4c558a906fe89f7f927b
-
3
Autoři: a další
Témata: Data management and data science not elsewhere classified, Exact and approximate methods for ranked-optimal solutions, K-ranked optimal solutions, Multi-objective integer programming model, Non-dominated point set, Rank-based solution method
Relation: 10779/rmit.27535167.v1
-
4
Autoři: a další
Přispěvatelé: a další
Témata: 共享經濟, 共享單車, 綠色閉環供應鏈, 多目標整數規劃模型, 利潤最大化, 碳排放最小化, NSGA-II演算法, Pareto解集, sharing economy, sharing bicycle, green closed-loop supply chain, multi-objective integer programming model, profit maximization, carbon minimization, NSGA-II Algorithm, Pareto solution set
Popis souboru: 1711313 bytes; application/pdf
Relation: 1. Aras et al.(2008).Locating collection centers for incentive-dependent returns under a pick-up policy with capacitated vehicles,Eur. J. Oper. Res., 191 2008, pp. 1223-1240\n2. Abdallah et al.(2012). Green supply chains with carbon trading and environmental sourcing: Formulation and life cycle assessment, Applied Mathematical Modelling, Vol. 36 (9), pp. 4271-4285\n3. Bazan et al. 2016) A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective, Applied Mathematical Modelling,Volume 40, Issues 5–6, March 2016, pp. 4151-4178\n4. Chemla et al. 2013). Bike sharing systems: Solving the static rebalancing problem, Discrete Optimization,Volume 10, Issue 2, May 2013, pp.120-146\n5. Cohen&Welling,(2015). Transformation Properties of Learned Visual Representations, In International Conference on Learning Representations (ICLR), 2015\n6. Corne, et al.(2000). The Pareto envelope-based selection algorithm for multiobjective optimization, Proceedings of sixth international conference on parallel problem solving from Nature, 18–20 September, 2000, Springer, Paris, France\n7. Deb et al.(2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans Evol Comput, Vol. 6 (2), pp. 182-197\n8. Deb et al.(2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,Proceedings of sixth international conference on parallel problem solving from nature, 18–20 September, 2000, Springer, Paris, France\n9. Diabat et al.(2013).Strategic closed-loop facility location problem with carbon market trading,IEEE Trans. Eng. Manag., 60 (2) (2013), pp. 398-408\n10. Fahimnia et al. (2013).The impact of carbon pricing on a closed-loop supply chain: an Australian case study, Journal of Cleaner Prod., 59 (13), pp. 210-225\n11. Fleischmann et al.(1997). Quantitative models for reverse logistics: A review, European Journal of Operational Research,Volume 103, Issue 1, 16 November 1997, pp. 1-17\n12. Fleischmann et al. (2001). The impact of product recovery on logistics network design,Prod. Oper. Manag., Vol. 10 , pp. 156-173\n13. Fonseca&Fleming,(1993).Genetic algorithms for multiobjective optimization: formulation, discussion and generalization, Proceedings of the ICGA-93: fifth international conference on genetic algorithms, 17–22 July 1993, Morgan Kaufmann, Urbana-Champaign, IL, USA\n14. Guide&Van(2001). WassenhoveManaging product returns for remanufacturing, Prod. Oper. Manag., Vol. 10 (2), pp. 142-155\n15. Goldberg,(1989), Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Longman Publishing Co., Boston, MA, USA\n16. Gui et al.(2016). Efficient Implementation of Collective Extended Producer Responsibility Legislation,Manage. Sci., Vol. 62 (4), pp. 1098-1123\n17. Govindan et al.(2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future, European Journal of Operational Research,Volume 240, Issue 3, 1 February 2015, pp. 603-626\n18. Holland(1975)Adaptation in natural and artificial systems,University of Michigan Press, Ann Arbor Kapetanopoulou , Tagaras , (2010) . Drivers and obstacles of product recovery activities in the Greek industry, Int. J. Oper. Prod. Manag. Vol. 31 (2) 148-166\n19. Jayaramana et al.(2003). The design of reverse distribution networks: Models and solution procedures European Journal of Operational ResearchVolume 150, Issue 1, 1 October 2003, Pages 128-149\n20. Ko&Evans(2007)A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs,Computers & Operations Research, 34 (2) (2007), pp. 346-366\n21. Kadambala et al.,(2017). Closed loop supply chain networks: Designs for energy and time value efficiency, International Journal of Production Economics,Volume 183, Part B, January 2017, pp. 382-393\n22. Krikke,(2011). Impact of closed-loop network configurations on carbon footprints: A case study in copiers, Resources, Conservation and Recycling,Volume 55, Issue 12, October 2011,pp. 1196-1205\n23. Konak et al.(2006). Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering & System Safety,Volume 91, Issue 9, September 2006, pp.992-1007\n24. Lee,(2009),Dynamic network design for reverse logistics operations under uncertaintyTransp. Res. Part E, 45 (2009), pp. 61-71\n25. Min (2006). A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns, Omega Vol.34, pp.56–69\n26. Soleimani et al.(2013). Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm, The International Journal of Advanced Manufacturing Technology, Vol. 68 (1–4), pp. 917-931\n27. Pishvaee et al. (2009),A stochastic optimization model for integrated forward/reverse logistics network design J. Manuf. Syst., 28 (2009), pp. 107-114\n28. Pishvaee,&Kianfar(2010),Reverse logistics network design using simulated annealing Int. J. Adv. Manuf. Technol., 47 (2010), pp. 269-281\n29. RoHS (2008).Working with EEE producers to ensure RoHS compliance through the European Union, URL http://www.rohs.eu/english/index.html.\n30. Rahman&Subramanian,(2012). Factors for implementing end-of-life computer recycling operations in reverse supply chains, Int. J. Prod. Econ., Vol. 140 pp. 239-248\n31. Su(2014). Fuzzy multi-objective recoverable remanufacturing planning decisions involving multiple components and multiple machines, Computers & Industrial Engineering, Vol. 72 , pp. 72-83\n32. Shi et al.(2017). Multi-objective optimization for a closed-loop network design problem using an improved genetic algorithm, Applied Mathematical Modelling,Volume 45, May 2017, pp. 14-30\n33. Walther&Spengler, (2005). Impact of WEEE-directive on reverse logistics in Germany, Int. J. Phys. Distrib. Logist. Manag. 35 337–361\n34. Özkır&Başlıgil, (2013). Multi-objective optimization of closed-loop supply chains in uncertain environment, Journal of Cleaner Production, Vol. 41, pp. 114-125\n35. Zitzler&Thiele,(1999).Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,IEEE Trans Evol Comput, 3 (4) (1999), pp. 257-271\n36. Zitzler et al.(2000). Comparison of multiobjective evolutionary algorithms: empirical results, Evol Comput, 8 (2), pp. 173-195\n37. Zailini et al.(2012), Sustainable supply chain management (SSCM) in Malaysia: A survey, International Journal of Production Economics,Volume 140, Issue 1, November 2012, pp. 330-340\n38. Zhou&Gen(1999). Genetic algorithm approach on multi-criteria minimum spanning tree problem, Eur. J. Oper. Res., Vol. 114, pp. 141-152\n39. 李敏蓮,(2017)。共享單車市場調研與分析。財經界,pp.121-123。\n40. 劉亞楠,(2017)。共享單車發展研究分析。時代金融,No.03,pp.251-254。\n41. 常山,宋瑞,何世偉,黎浩東,(2018)。共享單車故障車輛回收模型。吉林大學學報,Vol.48,No.6 pp.1677-1683。\n42. 郭鹏,林祥枝,黄艺,涂思明,白晓明,杨雅雯,叶林,(2017)。共享单车:互联网技术与公共服务中的协同治理。公共管理學報,No.3 ,pp.1-10。\n43. 湯天波,吳曉隽,(2015)。共享经济:“互联网+”下的颠覆性经济模式。科學發展,No.12,pp.78-85。\n44. 胡靜靜,(2018)。共享經濟:國內外文獻綜述與研究展望。改革與戰略No.34,pp.134-138。\n45. 中國信通院,2017年共享單車經濟社會影響報告,上網日期2018年2月6日,檢自:http://www.caict.ac.cn/sytj/201802/t20180206_172836.htm\n46. 李成東,摩拜1000,哈罗800,ofo的车500块到底有什么差别?,上網日期2018年4月17日,檢自:https://zhuanlan.zhihu.com/p/35768121\n47. 企鵝智酷調查,2016年12月,檢自https://tech.qq.com/a/20170228/019218.htm; G0106356042; https://nccur.lib.nccu.edu.tw//handle/140.119/125534; https://nccur.lib.nccu.edu.tw/bitstream/140.119/125534/1/604201.pdf
Nájsť tento článok vo Web of Science
Full Text Finder