Suchergebnisse - "medical image analysis"
-
1
Autoren: Issam Ismail Zaidkilani, Nadeem
Thesis Advisors: García García, Miguel Angel, Puig Valls, Domènec Savi
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: Càncer de Mama - Imatges per Ultrasò, Anàlisi d'Imatges Mèdiques, Diagnòstic Assistit per Ordinador (CAD), Cáncer de Mama - Imágenes por Ultrasonido, Análisis de Imágenes Médicas, Diagnóstico Asistido por Computadora (CAD), Breast Cancer-Ultrasound, Medical Image Analysis, Computer-Aided Diagnosis (CAD), Ciències
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/10803/695647
-
2
Autoren: Pitarch i Abaigar, Carla
Weitere Verfasser: University/Department: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Thesis Advisors: Vellido Alcacena, Alfredo, Ribas Ripoll, Vicente Jorge
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: glioma grading, artificial intelligence, deep learning, magnetic resonance imaging, neuro-oncology, model robustness, reliable AI, data preprocessing, medical image analysis, Àrees temàtiques de la UPC::Informàtica, Àrees temàtiques de la UPC::Enginyeria biomèdica, 004 - Informàtica, 616.8 - Neurologia. Neuropatologia.Sistema nerviós
Dateibeschreibung: application/pdf
-
3
Autoren: Ali, Mohammed Yousef Salem
Weitere Verfasser: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques
Thesis Advisors: Valls Mateu, Aïda, Abdelnasser Mohamed Mahmoud, Mohamed, Baget Bernaldiz, Marc
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: aprenentatge profund, visió per computador, Anàlisi d'imatges mèdiques, aprendizaje profundo, visión por computador, Análisis de imágenes médicas, deep learning, computer vision, Medical image analysis, Enginyeria i arquitectura
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/10803/687502
-
4
Autoren: et al.
Quelle: Computers in Biology and Medicine. 190
Schlagwörter: Cardiovascular disease assessment, Carotid ultrasound images, Deep learning, Domain adaptation, Generative Adversarial Network, Image harmonization, Medical image analysis, Noise reduction
Dateibeschreibung: electronic
-
5
Autoren: Jiménez Sánchez, Amelia
Weitere Verfasser: University/Department: Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
Thesis Advisors: Piella Fenoy, Gemma, Mateus, Diana
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: Learning representations, Medical image analysis, Medical image diagnosis, Deep learning, Capsule nerworks, Curriculum learning, Federated learning, Domain adaptation, Aprendizaje de representaciones, Análisis de imagen médica, Diagnóstico en imagen mèdica, Aprendizaje profundo, Aprendizaje curricular, Aprendizaje federado, Adaptación al dominio
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/10803/672839
-
6
Autoren: Escorcia Gutierrez, José
Weitere Verfasser: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques
Thesis Advisors: Puig Valls, Domènec, Romero Aroca, Pedro, Valls Mateu, Aïda
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: Retinopatia diabètica, Anàlisi d'imatges mèdiques, Segmentació de la imatge del fons, Retinopatía diabética, Análisis de imágenes médicas, Segmentación de la imagen del fondo de ojo, Diabetic retinopathy, Medical image analysis, Fundus image segmentation, Ingeniería y arquitectura
Time: 621.3
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/10803/671543
-
7
Autoren: et al.
Quelle: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi); Vol 9 No 4 (2025): August 2025; 923-934
Schlagwörter: Transformer, hematology, white blood cell classification, YOLOv8, object detection, DeTR, medical image analysis, data augmentation
Dateibeschreibung: application/pdf
-
8
Autoren: et al.
Quelle: Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi, Vol 13, Iss 1 (2025)
-
9
Autoren: et al.
Quelle: Pattern Recognition Letters. 193:86-93
Schlagwörter: FOS: Computer and information sciences, Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Histological subtype classification, Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, Electrical Engineering and Systems Science - Image and Video Processing, Quantitative Biology - Quantitative Methods, Multi-stage fusion, Artificial Intelligence (cs.AI), Multimodal deep learning, Medical image analysis, FOS: Biological sciences, FOS: Electrical engineering, electronic engineering, information engineering, Intermediate fusion, Quantitative Methods (q-bio.QM)
-
10
Autoren: et al.
Quelle: 2025 MIPRO 48th ICT and Electronics Convention. :1310-1315
-
11
Autoren: et al.
Quelle: Journal of Imaging Informatics in Medicine. 38(1)
Schlagwörter: 32 Biomedical and Clinical Sciences (for-2020), 3202 Clinical Sciences (for-2020), Bioengineering (rcdc), Machine Learning and Artificial Intelligence (rcdc), Networking and Information Technology R&D (NITRD) (rcdc), Clinical Research (rcdc), 4.2 Evaluation of markers and technologies (hrcs-rac), 4.1 Discovery and preclinical testing of markers and technologies (hrcs-rac), Humans (mesh), Deep Learning (mesh), Pathologists (mesh), Melanoma (mesh), Image Interpretation, Computer-Assisted (mesh), Skin Neoplasms (mesh), Image Processing, Computer-Assisted (mesh), Diagnosis, Computer-Assisted (mesh), Digital pathology, Medical image analysis, Deep learning, Region of interest, Saliency detection, Image reconstruction, Humans (mesh), Melanoma (mesh), Skin Neoplasms (mesh), Diagnosis, Computer-Assisted (mesh), Image Interpretation, Computer-Assisted (mesh), Image Processing, Computer-Assisted (mesh), Pathologists (mesh), Deep Learning (mesh), Deep learning, Digital pathology, Image reconstruction, Medical image analysis, Region of interest, Saliency detection, Humans (mesh), Deep Learning (mesh), Pathologists (mesh), Melanoma (mesh), Image Interpretation, Computer-Assisted (mesh), Skin Neoplasms (mesh), Image Processing, Computer-Assisted (mesh), Diagnosis, Computer-Assisted (mesh)
Dateibeschreibung: application/pdf
-
12
Autoren: et al.
Quelle: 2025 IEEE 38th International Symposium on Computer-Based Medical Systems (CBMS). :1-6
-
13
Autoren:
Quelle: Volume: 9, Issue: 173-91
International Journal of 3D Printing Technologies and Digital IndustrySchlagwörter: Deep Learning, Image Processing, 3D Image Segmentation, Medical Image Analysis, U-Net, UNETR, Swin-Unet, Yazılım Mühendisliği (Diğer), Software Engineering (Other), 3D U-Net, SwinUNETR
Dateibeschreibung: application/pdf
-
14
Autoren: et al.
Quelle: 48th ICT and Electronics Convention MIPRO 2025. :1498-1503
Schlagwörter: Deep Learning, Congenital Heart Disease, Medical Image Analysis, Fetal Ultrasound, ResNet-18
-
15
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies. :369-375
Schlagwörter: Deep Reinforcement Learning, Medical Image Analysis, Whole Slide Images, Computational Pathology, Goal-Conditioned Reinforcement Learning, [INFO] Computer Science [cs]
Dateibeschreibung: application/pdf
-
16
Autoren: Sánchez Martínez, Sergio
Weitere Verfasser: University/Department: Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
Thesis Advisors: Duchateau, Nicolas, Piella Fenoy, Gemma, Bijnens, Bart
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: Machine learning, Medical image analysis, Pattern recognition, Multiple kernel learning, Dimensionality reduction, Echocardiography, Early diagnosis, Heart failure, Cardiac resynchronization therapy, Aprendizaje automático, Análisis de imágenes médicas, Reconocimiento de patrones, Aprendizaje de kernel múltiple, Ecocardiografía, Diagnóstico temprano, Insuficiencia cardíaca, Tratamiento de re-sincronización cardíaca
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/10803/663748
-
17
Autoren:
Quelle: Journal of Electrical Engineering and Computer, Vol 7, Iss 2, Pp 461-470 (2025)
Schlagwörter: monkeypox skin lesions deep learning vision transformers convolutional neural network hybrid model medical image analysis, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
18
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-21 (2025)
Schlagwörter: Colorectal cancer, Polyp segmentation, Medical image analysis, Attention mechanisms, Deep learning, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
19
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-29 (2025)
Schlagwörter: Skin lesion segmentation, Medical image analysis, Deep learning, Efficient_Net, Attention mechanisms, Computer-aided diagnosis, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
20
Autoren:
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-19 (2025)
Schlagwörter: Automated brain tumor detection, Vision transformer architecture, Hierarchical attention mechanisms, Medical image analysis, Deep learning applications, Multi-resolution feature extraction, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
Full Text Finder
Nájsť tento článok vo Web of Science