Search Results - "mathematics teaching and learning"

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Source: Revista Ibero-Americana de Humanidades, Ciências e Educação; Vol. 11 No. 7 (2025): Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE; 249-266 ; Revista Ibero-Americana de Humanidades, Ciências e Educação; v. 11 n. 7 (2025): Revista Ibero-Americana de Humanidades, Ciências e Educação — REASE; 249-266 ; 2675-3375 ; 10.51891/rease.v11i7

    File Description: application/pdf

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Source: LUMAT-B: International Journal on Math, Science and Technology Education; Vol. 9 No. 2 (2024): 29th International Mathematical Views Conference 2023 – Conference Proceedings; 16 ; LUMAT-B: International Journal on Math, Science and Technology Education; Vol 9 Nro 2 (2024): 29th International Mathematical Views Conference 2023 – Conference Proceedings; 16 ; 2489-2572 ; urn:nbn:fi:hulib:editori:lumatb.v9i21

    File Description: application/pdf

  15. 15
  16. 16

    Source: Revista Ibero-Americana de Humanidades, Ciências e Educação; Vol. 10 No. 6 (2024): Revista Ibero-Americana de Humanidades, Ciências e Educação- REASE; 3951-3968 ; Revista Ibero-Americana de Humanidades, Ciências e Educação; v. 10 n. 6 (2024): Revista Ibero-Americana de Humanidades, Ciências e Educação- REASE; 3951-3968 ; 2675-3375 ; 10.51891/rease.v10i6

    File Description: application/pdf

  17. 17
  18. 18

    Source: REAMEC-Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 11 Núm. 1 (2023): Janeiro a dezembro de 2023-Publicação Contínua (10 ANOS DA REVISTA REAMEC); e23084
    REAMEC-Rede Amazônica de Educação em Ciências e Matemática; v. 11 n. 1 (2023): Janeiro a dezembro de 2023-Publicação Contínua (10 ANOS DA REVISTA REAMEC); e23084
    REAMEC Journal-Amazonian Network of Mathematical Education; Vol. 11 No. 1 (2023): Janeiro a dezembro de 2023-Publicação Contínua (10 ANOS DA REVISTA REAMEC); e23084

    File Description: application/pdf

  19. 19

    Subject Terms: Recent studies in mathematics education address the benefits of embodied approaches in students' learning processes (Abrahamson et al., 2020, De Freitas & Sinclair, 2012). Inspired by the idea that embodied learning environments help to construct knowledge, we designed and implemented an activity based on the use of artifacts that act as mediators of knowledge, according to the theoretical model of ‘semiotic mediation' (Bartolini Bussi & Mariotti, 2008), in a process producing different artifact signs, verbal and non-verbal, such as gestures or drawings (Arzarello, 2006), and on the use of boards as in a ‘thinking classroom' (Liljedahl, 2016). Galileo himself sends the students the 'areas' problem (Galilei, 1638) written on parchment, and they simulate meeting and questioning the scientist, asking for his method, the meaning of several associated words, and how to apply it. The first findings reveal significant gains in students' thinking processes, language, and emotional states. References Abrahamson, D., Nathan, M. J., Williams-Pierce, C., Walkington, C., Ottmar, E. R., Soto, H., & Alibali,M. W. (2020). The future of embodied design for mathematics teaching and learning. Frontiers in Education, 5, 147. https:// doi. org/ 10. 3389/ feduc. 2020. 00147 Arzarello, F. (2006), Semiosis as a multimodal process, Relime Vol Especial, 267-299. Bartolini Bussi M. G. & Mariotti M. A. (2008), Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective, in L. English (ed.), Handbook of International Research in Mathematics Education (second edition), Routledge. De Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: Theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1–2), 133–152. https:// doi. org/ 10. 1007/s10649- 011- 9364-8 Galilei, G. (1638). Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla meccanica e i movimenti locali. L. Elzeviro (Eds). Leida - Paesi Bassi. Liljedahl, P. (2016). Building thinking classrooms: Conditions for problem solving. In P. Felmer, J. Kilpatrick, & E. Pekhonen (Eds.), Posing and Solving Mathematical Problems: Advances and New Perspectives (pp. 261–386). Springer. https://doi.org/10.1007/978-3-319-28023-3_21

  20. 20