Výsledky vyhledávání - "mathematical simulation"

Upřesnit hledání
  1. 1
  2. 2

    Zdroj: Bulletin of NTU "KhPI". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice; No. 1 (13) (2025): Bulletin of the National Technical University "KhPI". Series: Problems of electrical machines and apparatus perfection. Theory and practice ; 37-43
    Вестник НТУ "ХПИ". Серия: Проблемы совершенствования электрических машин и аппаратов. Теория и практика; № 1 (13) (2025): Вісник Національного технічного університету «ХПІ». Серія: Проблеми удосконалювання електричних машин і апаратів. Теорія і практика ; 37-43
    Вісник НТУ «ХПІ». Серія: Проблеми удосконалювання електричних машин i апаратiв. Теорiя i практика; № 1 (13) (2025): Вісник Національного технічного університету «ХПІ». Серія: Проблеми удосконалювання електричних машин і апаратів. Теорія і практика ; 37-43

    Popis souboru: application/pdf

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Témata: Motivic t-Structure Conjecture Spectral t-Structure Mixed Motives Triangulated Categories Abelian Heart Cycle Equivalence Numerical Equivalence Homological Equivalence Realization Functors Betti Realization de Rham Realization ℓ-adic Realization Galois Representations Cycle Class Maps Spectral Motif Encoding Ripple Logic Trace Operator Validator-Grade Proof Derived Category Distinguished Triangles Truncation Functors Exactness Functoriality Cohomological Compatibility Arithmetic Geometry Motivic Cohomology Algebraic Cycles Grothendieck Standard Conjectures Motivic Simulation Convergence Analysis Replication Protocols Formal Verification Mathematical Logic Category Theory Algebraic Geometry Homotopy Theory K-Theory Hodge Theory Étale Cohomology Langlands Program L-functions Regulator Maps Derived Functors Spectral Sequences Weight Filtration Motive Realization Motivic Galois Group Motivic Homotopy Theory Motivic Integration Motivic Sheaves Motivic Tensor Categories Motivic Derived Algebra Motivic Stack Theory Motivic Trace Invariants Motivic Simulation Framework Validator Framework Peer-Verified Mathematics Zenodo Publication Mathematical Replicability Formal Mathematical Software Mathematical Infrastructure Mathematical Conjecture Resolution Mathematical Proof Engineering Mathematical Data Integrity Mathematical Simulation Fidelity Alexander Grothendieck Vladimir Voevodsky Pierre Deligne Jean-Pierre Serre Spencer Bloch Uwe Jannsen Joseph Ayoub Barry Mazur Amnon Neeman Alexander Beilinson Markus Rost Motives Spectral Methods Algebraic Geometry Arithmetic Compatibility Cycle Theory Derived Categories Mathematical Verification Mathematical Simulation Mathematical Software Mathematical Infrastructure Mathematical Publishing Mathematical Replication Mathematical Conjectures Mathematical Proof Systems Mathematical Data Models Mathematical Fidelity Mathematical Logic Systems Mathematical Frameworks Mathematical Research Tools Mathematical Peer Review Mathematical Validator Systems

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Témata: Happy Ending Problem • Convex Polygon Emergence • Erdős–Szekeres Conjecture • Extremal Combinatorics • Affine Geometry • Motivic Cycles • Spectral Simulation • Category Theory • Topological Compactness • Categorical Lifting • Configuration Spaces • Convex Hull Algorithms • Vietoris Topology • Functorial Convexity • Algebraic Geometry • Monte Carlo Validation • Diagrammatic Reasoning • Validator-Grade Proofs • Mathematical Formalization • Reproducible Mathematics • Zenodo-Ready Resolution • Triadic Framework • Emergence Theory • Structural Stability • Mathematical Simulation • Cycle Equivalence • Codimension-One Filtration • Hyperspace Topology • Point Set Geometry • Convexity Guarantees • Mathematical Rigour • Proof Engineering • Formal Verification • Mathematical Validator Architecture 52C10 — Erdős-type problems (combinatorial geometry) • 52A01 — Convex sets in 2 dimensions • 14C25 — Algebraic cycles • 14F42 — Motivic sheaves and spectra • 18A30 — Limits and colimits (category theory) • 18C10 — Categories of functors • 54B20 — Hyperspaces (topology) • 60C05 — Combinatorial probability • 65C05 — Monte Carlo methods • 68U05 — Computer graphics (for simulation protocols) • 03B35 — Mechanization of proofs and formal logic • 68T15 — Theorem proving and logical inference systems • Conjecture Originators:• Paul Erdős • George Szekeres • Computational Milestones:• Szekeres & Peters (2006) — Verified `\( f(6) = 17 \)` via computer • Validator Framework (2025) — Full triadic resolution via Packages A–C • Mathematical Domains Involved:• Discrete Geometry • Algebraic Geometry • Topology • Category Theory • Computational Simulation • Formal Proof Systems

  17. 17

    Zdroj: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 68, № 4 (2025); 367-384 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 68, № 4 (2025); 367-384 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2025-68-4

    Popis souboru: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2483/1960; Математическое моделирование комбинированной системы теплоснабжения солнечного дома / Г. Н. Узаков, В. Л. Червинский, У. Х. Ибрагимов [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2022. Т. 65, № 5. С. 412–421. https://doi.org/10.21122/1029-7448-2023-65-5-412-421.; Седнин, А. В. Проблемы развития гибридных систем теплоснабжения / А. В. Седнин, К. М. Дюсенов // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2024. Т. 67, № 2. С. 173–188. https://doi.org/10.21122/1029-7448-2024-67-2-173-188.; CFD-моделирование аэродинамического профиля лопастей ветроэнергетической установки с вертикальной осью в системе Ansys Fluent / Г. Н. Узаков, В. А. Седнин, А. Б. Сафаров [и др.] // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2024. Т. 67, № 2. С. 97–114. https://doi.org/10.21122/1029-7448-2024-67-2-97-114.; Safarov, A. B. Autonomous Heat-Cooling and Power Supply System Based on Renewable Energy Devices (Trigeneration System) / A. B. Safarov, O. I. Rakhmatov, Y. G. Uzakova // BIO Web of Conferences. 2023. Vol. 71. P. 02030. https://doi.org/10.1051/bioconf/20237102030.; Development of a System for Modeling the Design and Optimization of the Operation of a Small Hydroelectric Power Station / G. N. Uzakov, Z. E. Kuziev, A. B. Safarov, R. A. Mamedov // Digital and Information Technologies in Economics and Management. DITEM 2023 / ed. A. Gibadullin. Springer, Cham, 2024. P. 243–252. (Lecture Notes in Networks and Systems; vol. 942). https://doi.org/10.1007/978-3-031-55349-3_20.; Sethi, V. P. On the Selection of Shape and Orientation of a Greenhouse: Thermal Modeling and Experimental Validation / V. P. Sethi // Solar Energy. 2009. Vol. 83, № 1. P. 21–38. https://doi.org/10.1016/j.solener.2008.05.018.; Çakır, U. Using Solar Greenhouses in Cold Climates and Evaluating Optimum Type According to Sizing Position and Location: A Case Study / U. Çakır, E. Şahin // Computers and Electronics in Agriculture. 2015. Vol. 117. P. 245–257. https://doi.org/10.1016/j.compag.2015.08.005.; Chen J. A Mathematical Model of Global Solar Radiation to Select the Optimal Shape and Orientation of the Greenhouses in Southern China / J. Chen, Y. Ma, Z. Pang // Solar Energy. 2020. Vol. 205, № 6. P. 380–389. https://doi.org/10.1016/j.solener.2020.05.055.; Dragichevich, S. M. Determining the Optimum Orientation of a Greenhouse on the Basis of the Total Solar Radiation Availability / S. M. Dragichevich // Thermal science. 2011. Vol. 15, № 1. P. 215–221. https://doi.org/10.2298/tsci100220057d.; Effects of Orientation and Structure on Solar Radiation Interception in Chinese Solar Greenhouse / D. Xu, Y. Li, Y. Zhang [et al.] // PLOS ONE. 2020. Vol. 15, № 11. Art. e0242002. https://doi.org/10.1371/journal.pone.0242002.; Optimal Solar Greenhouses Design Using Multiobjective Genetic Algorithm / B. M. Karambasti, M. Naghashzadegan, M. Ghodrat, A. Lalbakhsh // IEEE Access. 2022. Vol. 10. P. 73728–73742. https://doi.org/10.1109/ACCESS.2022.3189348.; A comparative study of greenhouse shapes and orientations under the climatic conditions of Marrakech, Morocco / A. Mellalou, A. Mouaky, A. Bacaoui, A. Outzourhit // International Journal of Environmental Science and Technology. 2022. Vol. 19. P. 6045–6056. https://doi.org/10.1007/s13762-021-03556-z.; Пенджиев, А. М. Математическая модель расчета температурного режима листа в условиях солнечной теплицы / А. М. Пенджиев // Альтернативная энергетика и экология. 2010. № 11. С. 65–68.; Вардиашвили, А. Б. Гидравлический и теплотехнический расчет подпочвенной аккумулирующей системы гелиотеплиц / А. Б. Вардиашвили, В. Д. Ким // Гелиотехника. 1980. № 6. C. 48–53.; Modeling the Heat Balance of a Solar Greenhouse with a Passive Heat Accumulator / A. G. Khalimov, B. E. Khairiddinov, V. D. Kim, G. G. Khalimov // Applied Solar Energy. 2013. Vol. 49, No 4. P. 211–214. https://doi.org/10.3103/S0003701X13040063.; Study of the Thermal Regime of Solar Greenhouses for the Individual Purpose for Their Design Features / Sh. I. Klychev, B. S. Rasakhodzhaev, Zh. Z. Akhadov [et al.] // Applied Solar Energy. 2022. Vol. 58, No. 1. P. 121–126. https://doi.org/10.3103/S0003701X22010091.; Akhatov, J. S. Numerical Calculations of Heat Engineering Parameters of a Solar Green-house Dryer / J. S. Akhatov, A. S. Halimov // Applied Solar Energy. 2015. Vol. 51, No 2. P. 107–111. https://doi.org/10.3103/S0003701X15020024.; Samiev, K. A. Study of the Performance of Greenhouse with Short Term Heat Storage and Night Insulation / K. A. Samiev, J. S. Akhatov // Proceedings of the ISES Solar World Congress, 2011. P. 826–830. https://doi.org/10.18086/swc.2011.15.11.; Investigation of Solar Greenhouses with Transformable (Adjustable) Body Depending on Indoor and Outdoor Air Temperature / B. S. Rasakhodzhaev, U. Z. Akhmadjanov, M. O. Boboeva [et al] // IOP Conference Series: Earth and Environmental Science. 2022. Vol. 1070, No 1. Art. 012030. https://doi.org/10.1088/1755-1315/1070/1/012030.; About the Production of Lemons Grown in an Autonomous Gabled Solar Greenhouse / I. A. Yuldashev, B. M. Botirov, N. S. Kholmirzayev, Y. M. Qurbanov // Applied Solar Energy. 2023. Vol. 59, No 1. P. 44–47. https://doi.org/10.3103/S0003701X23600431.; Nasa Power. Data Access Viewer (DAV). URL: https://power.larc.nasa.gov/data-access-viewer.; Assessment of Solar Radiation on Diversely Oriented Surfaces and Optimum Tilts for Solar Absorbers in Malaysian Tropical Latitude / K. M. Ng, N. M. Nor Mariah Adam, O. Inayatullah, M. Z. Ab Kadir // International Journal of Energy and Environmental Engineering. 2014. Vol. 5, No 1. https://doi.org/10.1007/s40095-014-0075-7.; Kendirli, B. Structural Analysis of Greenhouses: A Case Study in Turkey / B. Kendirli // Building and Environment. 2006. Vol. 41. P. 864–871. https://doi.org/10.1016/j.buildenv.2005.04.013.; Hailu, G. Optimum Tilt Angle and Orientation of Photovoltaic Thermal System for Application in Greater Toronto Area, Canada / G. Hailu, A. S. Fung // Sustainability. 2019. Vol. 11, No 22. P. 6443. https://doi.org/10.3390/su11226443.; Gheyrati, M. Optimum Orientation of the Multi-Span Greenhouse for Maximum Capture of Solar Energy in Central Region of Iran / M. Gheyrati, A. Akram, H. Ghasemi-Mobtaker // Journal of Renewable Energy and Environment. 2022. Vol. 9, No. 3. P. 65–74. https://doi.org/10.30501/jree.2022.305780.1259.; Gairaa, K. Maximisation and Optimisation of the Total Solar Radiation Reaching the Solar Collector Surfaces / K. Gairaa // Progress in Clean Energy / eds.: I. Dincer, C. Colpan, O. Kizilkan, M. Ezan. Springer, Cham, 2015. Vol. 2. P. 873–886. https://doi.org/10.1007/978-3-319-17031-2_57.; Duffie, J. A. Solar Engineering of Thermal Processes / J. A. Duffie, W. A. Beckman. New Jersey: John Wiley & Son, 2013. 944 р. https://doi.org/10.1002/9781118671603.; Optimization of Angle of Inclination of the Hybrid Photovoltaic-Thermal Solar Collector Using Particle Swarm Optimization Algorithm / T. Ismail, K. Touafek, N. Bellel, N. Bouarroudj // Journal of Renewable and Sustainable Energy. 2014. Vol. 6, iss. 5. Art. 053116. https://doi.org/10.1063/1.4896956.; Jafarkazemi, F. Optimum Tilt Angle and Orientation of Solar Surfaces in Abu Dhabi, UAE / F. Jafarkazemi, A. S. Saadabadi // Renewable Energy. 2013. Vol. 56. P. 44–49. https://doi.org/10.1016/j.renene.2012.10.036.; Singh, R. D. Energy conservation in the greenhouse system: A steady state analysis / R. D. Singh, G. N. Tiwari // Energy. 2010. Vol. 35, iss. 6. P. 2367–2373. https://doi.org/10.1016/j.energy.2010.02.003.; Solar Energy Conservation in Greenhouse: Thermal Analysis and Experimental Validation / H. G. Mobtaker, Y. Ajabshirchi, S. F. Ranjbar, M. Matloobi // Renewable Energy. 2016. Vol. 96, Part A. P. 509–519. https://doi.org/10.1016/j.renene.2016.04.079.; Optimum Design and Orientation of a Greenhouse for Seasonal Winter Drying in Morocco under Constant Volume Constraint / A. Mellalou, W. Riad, A. Mouaky [et al.] // Solar Energy. 2021. Vol. 230. P. 321–332. https://doi.org/10.1016/j.solener.2021.10.050.; El-Maghlany, W. M. Optimum Design and Orientation of the Greenhouses for Maximum Capture of Solar Energy in North Tropical Region / W. M. El-Maghlany, M. A. Teamah, H. Tanaka // Energy Conversion and. Management. 2015. Vol. 105. P. 1096–1104. https://doi.org/10.1016/j.enconman.2015.08.066.; Karambasti, B. M. Optimum Design of a Greenhouse for Efficient use of Solar Radiation Using a Multi-Objective Genetic Algorithm / B. M. Karambasti // Energy Efficiency. 2022. Vol. 15, № 8. Art. 66. https://doi.org/10.1007/s12053-022-10073-6.; https://energy.bntu.by/jour/article/view/2483

  18. 18
  19. 19
  20. 20

    Zdroj: Sinapsis; Vol. 26 No. 1 (2025): La Investigación y el Conocimiento Científico no se detiene ; Revista Científica Sinapsis; Vol. 26 Núm. 1 (2025): La Investigación y el Conocimiento Científico no se detiene ; Sinapse; v. 26 n. 1 (2025): La Investigación y el Conocimiento Científico no se detiene ; 1390-9770 ; 1390-7832 ; urn:nbn:de:0000-s.v26i1 ; 10.37117/s.v26i1

    Popis souboru: application/pdf; text/html; text/xml