Výsledky vyhledávání - "localized eigenfunction"

  • Zobrazuji výsledky 1 - 6 z 6
Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Popis souboru: application/pdf

    Relation: mr:MR1981533; zbl:Zbl 1022.74003; reference:[1] Ciarlet P. G., Kesavan S.: Two dimensional approximations of three dimensional eigenvalues in plate theory.Comput. Methods Appl. Mech. Engrg. 26 (1980), 149–172. MR 0626720; reference:[2] Zorin I. S., Nazarov S. A.: Edge effect in the bending of a thin three-dimensional plate.J. Appl. Math. Mech. 53 (1989), 500–507. MR 1022416, 10.1016/0021-8928(89)90059-2; reference:[3] Dauge M., Djurdjevic I., Faou E., Rössle A.: Eigenmode asymptotics in thin elastic plates.J. Math. Pures Appl. 78 (1999), 925–964. MR 1725748, 10.1016/S0021-7824(99)00138-5; reference:[4] Berdichevskii V. L.: High-frequency long-wave oscillations of plates.Doklady AN SSSR 236 (1977), 1319–1322. MR 0455709; reference:[5] Berdichevskii V. L.: Variational Principles in Mechanics of Continuous Media.Nauka, Moskva, 1983. MR 0734171; reference:[6] Nazarov S. A.: On the asymptotics of the spectrum of a thin plate problem of elasticity.Siberian Math. J. 41 (2000), 744–759. Zbl 1150.74367, MR 1785611, 10.1007/BF02679699; reference:[7] Nazarov S. A.: Asymptotics of eigenvalues of the Dirichlet problem in a thin domain.Sov. Math. 31 (1987), 68–80. Zbl 0664.35064; reference:[8] Kamotskii I. V., Nazarov S. A.: On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain.Probl. matem. analiz 19 (1999), 105–148. (Russian) MR 1784687; reference:[9] Maz’ya V., Nazarov S., Plamenevskij B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. 1, 2.Birkhäuser, Basel, 2000.; reference:[10] Evans D. V., Levitin M., Vasil’ev D.: Existence theorems for trapped modes.J. Fluid Mech. 261 (1994), 21–31. MR 1265871, 10.1017/S0022112094000236; reference:[11] Roitberg I., Vassiliev D., Weidl T.: Edge resonance in an elastic semi-strip.Q. J. Mech. Appl. Math. 51 (1998), 1–13. MR 1610688, 10.1093/qjmam/51.1.1; reference:[12] Nazarov S. A.: The structure of solutions of elliptic boundary value problems in slender domains.Vestn. Leningr. Univ. Math. 15 (1983), 99–104. Zbl 0527.35011; reference:[13] Nazarov S. A.: A general scheme for averaging selfadjoint elliptic systems in multidimensional domains, including thin domains.St. Petersburg Math. J. 7 (1996), 681–748. MR 1365812; reference:[14] Nazarov S. A.: Singularities of the gradient of the solution of the Neumann problem at the vertex of a cone.Math. Notes 42 (1987), 555–563. Zbl 0639.35018, MR 0910031, 10.1007/BF01138726; reference:[15] Maz’ya V. G., Nazarov S. A., Plamenevskii B. A.: On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone.Math. USSR Sbornik 50 (1985), 415–437. 10.1070/SM1985v050n02ABEH002837; reference:[16] Nazarov S. A.: Justification of asymptotic expansions of the eigenvalues of non-selfadjoint singularly perturbed elliptic boundary value problems.Math. USSR Sbornik 57 (1987), 317–349. MR 0837128, 10.1070/SM1987v057n02ABEH003071; reference:[17] Nazarov S. A.: Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates.Nauchnaya Kniga, Novosibirsk, 2001. (Russian)