Výsledky vyhledávání - "localized eigenfunction"
-
1
Autoři: a další
Přispěvatelé: a další
Témata: defect mode, high contrast media, localized eigenfunction, random media, stochastic homogenization, Settore MATH-03/A - Analisi matematica
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001114759300032; volume:55; issue:6; firstpage:7449; lastpage:7489; numberofpages:41; journal:SIAM JOURNAL ON MATHEMATICAL ANALYSIS; https://hdl.handle.net/2434/1100992
-
2
Autoři: Serguei A. Nazarov
Zdroj: Mathematica Bohemica. 127:283-292
Témata: mixed boundary value problem, Asymptotic behavior of solutions to PDEs, 4. Education, localized eigenfunction, Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics, boundary layer, trapped mode, 01 natural sciences, spectrum, Classical linear elasticity, Anisotropy in solid mechanics, thin domain, Laplacian, 0101 mathematics
Popis souboru: application/xml
-
3
Autoři: Norbert Riedel
Zdroj: Ergodic Theory and Dynamical Systems. 19:1521-1525
Témata: Ergodic theorems, spectral theory, Markov operators, localized eigenfunction, rotation \(C^*\)-algebra, Ergodicity, mixing, rates of mixing, difference equation, 0101 mathematics, 01 natural sciences
Popis souboru: application/xml
-
4
Autoři: Jun Kigami
Zdroj: Journal of Functional Analysis. 156:170-198
Témata: Probabilistic potential theory, post critical set, Fractals, Laplace operator, Asymptotic distributions of eigenvalues in context of PDEs, finitely ramified fractals, localized eigenfunction, eigenvalue counting function, fractal Laplacian, 0101 mathematics, 01 natural sciences, Analysis
Popis souboru: application/xml
-
5
Autoři:
Zdroj: Journal of the London Mathematical Society. 56:320-332
Témata: counting function, Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation, Asymptotic distributions of eigenvalues in context of PDEs, self-similar fractal spaces, localized eigenfunction, 0101 mathematics, 01 natural sciences
Popis souboru: application/xml
Přístupová URL adresa: https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610797005358
https://academic.oup.com/jlms/article/56/2/320/790594
http://janroman.dhis.org/finance/Related%20to%20Fractals/fractals/bladerunner_REQUNIQ=1006429463&REQSESS=2025665&118200REQEVENT=&REQINT1=19934&REQAUTH=0.pdf
https://dialnet.unirioja.es/servlet/articulo?codigo=439962 -
6
Autoři: Nazarov, Serguei A.
Témata: keyword:spectral problem, keyword:thin domain, keyword:boundary layer, keyword:trapped mode, keyword:localized eigenfunction, msc:35B40, msc:35J25, msc:35P05, msc:74B05, msc:74E10, msc:74G10
Popis souboru: application/pdf
Relation: mr:MR1981533; zbl:Zbl 1022.74003; reference:[1] Ciarlet P. G., Kesavan S.: Two dimensional approximations of three dimensional eigenvalues in plate theory.Comput. Methods Appl. Mech. Engrg. 26 (1980), 149–172. MR 0626720; reference:[2] Zorin I. S., Nazarov S. A.: Edge effect in the bending of a thin three-dimensional plate.J. Appl. Math. Mech. 53 (1989), 500–507. MR 1022416, 10.1016/0021-8928(89)90059-2; reference:[3] Dauge M., Djurdjevic I., Faou E., Rössle A.: Eigenmode asymptotics in thin elastic plates.J. Math. Pures Appl. 78 (1999), 925–964. MR 1725748, 10.1016/S0021-7824(99)00138-5; reference:[4] Berdichevskii V. L.: High-frequency long-wave oscillations of plates.Doklady AN SSSR 236 (1977), 1319–1322. MR 0455709; reference:[5] Berdichevskii V. L.: Variational Principles in Mechanics of Continuous Media.Nauka, Moskva, 1983. MR 0734171; reference:[6] Nazarov S. A.: On the asymptotics of the spectrum of a thin plate problem of elasticity.Siberian Math. J. 41 (2000), 744–759. Zbl 1150.74367, MR 1785611, 10.1007/BF02679699; reference:[7] Nazarov S. A.: Asymptotics of eigenvalues of the Dirichlet problem in a thin domain.Sov. Math. 31 (1987), 68–80. Zbl 0664.35064; reference:[8] Kamotskii I. V., Nazarov S. A.: On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain.Probl. matem. analiz 19 (1999), 105–148. (Russian) MR 1784687; reference:[9] Maz’ya V., Nazarov S., Plamenevskij B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. 1, 2.Birkhäuser, Basel, 2000.; reference:[10] Evans D. V., Levitin M., Vasil’ev D.: Existence theorems for trapped modes.J. Fluid Mech. 261 (1994), 21–31. MR 1265871, 10.1017/S0022112094000236; reference:[11] Roitberg I., Vassiliev D., Weidl T.: Edge resonance in an elastic semi-strip.Q. J. Mech. Appl. Math. 51 (1998), 1–13. MR 1610688, 10.1093/qjmam/51.1.1; reference:[12] Nazarov S. A.: The structure of solutions of elliptic boundary value problems in slender domains.Vestn. Leningr. Univ. Math. 15 (1983), 99–104. Zbl 0527.35011; reference:[13] Nazarov S. A.: A general scheme for averaging selfadjoint elliptic systems in multidimensional domains, including thin domains.St. Petersburg Math. J. 7 (1996), 681–748. MR 1365812; reference:[14] Nazarov S. A.: Singularities of the gradient of the solution of the Neumann problem at the vertex of a cone.Math. Notes 42 (1987), 555–563. Zbl 0639.35018, MR 0910031, 10.1007/BF01138726; reference:[15] Maz’ya V. G., Nazarov S. A., Plamenevskii B. A.: On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone.Math. USSR Sbornik 50 (1985), 415–437. 10.1070/SM1985v050n02ABEH002837; reference:[16] Nazarov S. A.: Justification of asymptotic expansions of the eigenvalues of non-selfadjoint singularly perturbed elliptic boundary value problems.Math. USSR Sbornik 57 (1987), 317–349. MR 0837128, 10.1070/SM1987v057n02ABEH003071; reference:[17] Nazarov S. A.: Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates.Nauchnaya Kniga, Novosibirsk, 2001. (Russian)
Dostupnost: http://hdl.handle.net/10338.dmlcz/134169
Nájsť tento článok vo Web of Science
Full Text Finder