Suchergebnisse - "kmeans clustering algorithm"
-
1
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 7284-7292 (2025)
-
2
Autoren:
Quelle: Archives of Transport, Vol 54, Iss 2, Pp 95-106 (2020)
Schlagwörter: Transportation engineering, T59.5, Automation, TA1001-1280, 0202 electrical engineering, electronic engineering, information engineering, traffic engineering, road network partition, canopy clustering algorithm, kmeans clustering algorithm, macroscopic fundamental diagram, 02 engineering and technology, TA1-2040, Engineering (General). Civil engineering (General)
Zugangs-URL: https://doaj.org/article/86f2c7c22e1a42d58f8c1c48aad405ed
https://ui.adsabs.harvard.edu/abs/2020ArTr...54...95L/abstract
https://paperity.org/p/274584787/road-network-partitioning-method-based-on-canopy-kmeans -clustering -algorithm
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-7fda764e-a475-4d01-86a1-02897147d6d1/c/at2020_2_lin_road.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-7fda764e-a475-4d01-86a1-02897147d6d1 -
3
Autoren: et al.
Quelle: Applied Sciences, Vol 13, Iss 15, p 8878 (2023)
Schlagwörter: roadside RSU deployment, traffic flow–information flow coupling theory, WSN node energy loss model, cooperative vehicle infrastructure system, Warshell algorithm, Kmeans clustering algorithm, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Relation: https://www.mdpi.com/2076-3417/13/15/8878; https://doaj.org/toc/2076-3417; https://doaj.org/article/55f998d0c1d544b0bc5a26178879c5cb
-
4
Autoren:
Quelle: Frontiers in Energy Research, Vol 10 (2022)
Schlagwörter: abnormal power consumption detection, isolation forest algorithm, kmeans clustering algorithm, entropy weight method, principal component dimension 11, General Works
Dateibeschreibung: electronic resource
-
5
Autoren: et al.
Quelle: IEEE Access, Vol 7, Pp 120616-120625 (2019)
Schlagwörter: 0301 basic medicine, 03 medical and health sciences, the Density-Canopy-Kmeans clustering algorithm, 0103 physical sciences, community detection, MDS, Network, Electrical engineering. Electronics. Nuclear engineering, 01 natural sciences, TK1-9971
-
6
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Rail traffic levels, KMeans clustering algorithm, machine learning, long-term track bed behaviour analysis, evaluating railway track quality, machine learning algorithms, high-speed line in the UK, single-layer Artificial Neural Network, high-speed line, Autoencoder, long-term track bed behaviour, track geometry data, maintenance scheduling optimisation
Dateibeschreibung: application/pdf
Zugangs-URL: https://hdl.handle.net/1842/41621
Full Text Finder
Nájsť tento článok vo Web of Science