Suchergebnisse - "graph convolutional autoencoder (GCAE)"
-
1
Autoren: et al.
Quelle: International Journal of Geographical Information Science. Mar2021, Vol. 35 Issue 3, p490-512. 23p.
Schlagwörter: *Maps, Cognition, Learning strategies, Vector data
-
2
Autoren:
Quelle: Earthquake Engineering & Structural Dynamics; Feb2024, Vol. 53 Issue 2, p815-837, 23p
Schlagwörter: GROUND motion, SEISMIC response, SPACE frame structures, STRUCTURAL frames, SYSTEM failures, STEEL framing
-
3
Autoren:
Quelle: Sensors (14248220); Nov2025, Vol. 25 Issue 21, p6724, 27p
-
4
Autoren:
Quelle: GeoInformatica; Oct2025, Vol. 29 Issue 4, p951-974, 24p
-
5
Autoren: et al.
Quelle: Frontiers of Computer Science; May2025, Vol. 19 Issue 5, p1-15, 15p
-
6
Autoren: et al.
Quelle: Structural Health Monitoring; May2025, Vol. 24 Issue 3, p1485-1499, 15p
Schlagwörter: AUTOENCODERS, FAULT diagnosis, DEEP learning, REPRESENTATIONS of graphs, ROLLER bearings
-
7
Autoren:
Quelle: Sensors (14248220); Apr2025, Vol. 25 Issue 8, p2601, 21p
Schlagwörter: AUTOENCODERS, SOCIAL networks, RESOURCE allocation, ACCURACY of information, TOPOLOGY
-
8
Autoren: et al.
Quelle: Information Sciences. Aug2022, Vol. 608, p1464-1479. 16p.
Schlagwörter: *ARTIFICIAL neural networks
-
9
Autoren: et al.
Quelle: Journal of Management Information Systems; 2023, Vol. 40 Issue 1, p271-301, 31p, 3 Diagrams, 7 Charts
-
10
Autoren: et al.
Quelle: ISPRS International Journal of Geo-Information; Nov2024, Vol. 13 Issue 11, p411, 17p
Schlagwörter: CONVOLUTIONAL neural networks, DEEP learning, CLASSIFICATION, GENERALIZATION, PIXELS
-
11
Autoren:
Quelle: Earthquake Engineering & Structural Dynamics. 53:815-837
-
12
Autoren: et al.
Quelle: Social Network Analysis & Mining; 4/18/2024, Vol. 14 Issue 1, p1-47, 47p
-
13
Autoren: et al.
Quelle: International Journal of Digital Earth; Jan2024, Vol. 17 Issue 1, p1-29, 29p
-
14
Autoren: Knura, Martin
Quelle: Cartography & Geographic Information Science; Jan2024, Vol. 51 Issue 1, p146-167, 22p
-
15
Autoren:
Quelle: Cartography & Geographic Information Science; Jan2024, Vol. 51 Issue 1, p79-96, 18p
Schlagwörter: DEEP learning, FOURIER transforms, CARTOGRAPHY, TRIANGULATION
-
16
Autoren:
Quelle: Multimedia Tools & Applications; Dec2023, Vol. 82 Issue 29, p44885-44910, 26p
-
17
Autoren:
Quelle: Artificial Intelligence Review; Dec2023, Vol. 56 Issue 12, p14663-14730, 68p
-
18
Autoren: et al.
Quelle: Geocarto International; 2023, Vol. 38 Issue 1, p1-30, 30p
Schlagwörter: SIGNAL filtering, SIGNAL theory, FEATURE extraction, SIGNAL processing
-
19
Autoren: et al.
Quelle: ISPRS International Journal of Geo-Information; May2022, Vol. 11 Issue 5, p311-311, 16p
Schlagwörter: DIGITAL maps, DEEP learning, URBAN planning, CLASSIFICATION, SPACE
-
20
Autoren: et al.
Quelle: International Journal of Geographical Information Science; Apr2022, Vol. 36 Issue 4, p639-673, 35p
Schlagwörter: ENCODING, ARTIFICIAL intelligence, DEEP learning, MACHINE learning
Nájsť tento článok vo Web of Science
Full Text Finder