Suchergebnisse - "gradient boosting algorithms"
-
1
Autoren: et al.
Quelle: New Phytologist. 247(3):1538-1549
Schlagwörter: feature selection, Fourier transform, gradient boosting algorithms, long noncoding RNAs (lncRNAs), model selection, ORF coverage
Dateibeschreibung: electronic
-
2
Autoren: et al.
Quelle: Korean Journal of Anesthesiology, Vol 78, Iss 5, Pp 429-442 (2025)
Schlagwörter: dependence, opioid, gradient boosting algorithms, machine learning, postoperative period, prediction methods, machine, surgical procedures, operative, Anesthesiology, RD78.3-87.3
Dateibeschreibung: electronic resource
-
3
Autoren:
Quelle: IEEE Access, Vol 13, Pp 24158-24170 (2025)
-
4
Autoren: et al.
Quelle: Remote Sensing, Vol 17, Iss 14, p 2383 (2025)
Schlagwörter: carbon emission forecasting, county level, gradient boosting algorithms, spatiotemporal patterns, SHAP interpretation, Science
Dateibeschreibung: electronic resource
-
5
Autoren: et al.
Quelle: International Journal of Concrete Structures and Materials, Vol 18, Iss 1, Pp 1-24 (2024)
Schlagwörter: Compressive strength, Quaternary blend concrete, Gradient-boosting algorithms, Ensemble machine learning, Systems of building construction. Including fireproof construction, concrete construction, TH1000-1725
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2234-1315
-
6
Autoren:
Quelle: Volume: 7, Issue: 2116-128
Journal of Intelligent Systems: Theory and Applications
Zeki Sistemler Teori ve Uygulamaları DergisiSchlagwörter: Makine Öğrenme (Diğer), Machine Learning, Feature Selection, Metaheuristics, Gradient Boosting Algorithms, Mutagenicity Prediction, In-Silico Modelling, Veri Yönetimi ve Veri Bilimi (Diğer), Makine Öğrenmesi, Özellik Seçimi, Metasezgisel, Gradyan Boosting Algoritmaları, Mutajenite Tahmini, In-Silico Modelleme, Machine Learning (Other), Data Management and Data Science (Other)
Dateibeschreibung: application/pdf
-
7
Autoren:
Quelle: Eastern-European Journal of Enterprise Technologies; Vol. 2 No. 2 (116) (2022): Information technology. Industry control systems; 6-12
Eastern-European Journal of Enterprise Technologies; Том 2 № 2 (116) (2022): Інформаційні технології. Системи управління в промисловості; 6-12Schlagwörter: machine learning, gradient boosting algorithms, моделювання кредитного шахрайства, алгоритми підвищення градієнта, unbalanced data, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, credit fraud modeling, машинне навчання, незбалансовані дані, 02 engineering and technology
Dateibeschreibung: application/pdf
Zugangs-URL: http://journals.uran.ua/eejet/article/view/254922
-
8
Autoren: et al.
Quelle: IEEE Access, Vol 11, Pp 52509-52526 (2023)
Schlagwörter: Machine learning classification algorithms, ensemble classifiers, gradient boosting algorithms, light gradient boosting machines (LGBM), and intrusion detection systems (IDS), Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
9
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: 728.036, 620.92, BIPV, PV power forecasting, Machine learning, Gradient boosting algorithms, Física de materiales, Física (Química), 2212.03 Energía (Física)
Dateibeschreibung: application/pdf
Relation: info:eu-repo/grantAgreement/MICINN/PID2021-124910OB-C3; https://hdl.handle.net/20.500.14352/103514
-
10
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Islam, M N, Islam, M T & Dhali, M A 2025, Classification and Prediction of Wafer Yield Using Gradient Boosting Algorithms : A Focus on Lithography Inline Parameters. in A Abdelgawad, A Jamil & A A Hameed (eds), 2025 IEEE 4th International Conference on Computing and Machine Intelligence, ICMI 2025 - Proceedings. 2025 IEEE 4th International Conference on Computing and Machine Intelligence, ICMI 2025 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 4th IEEE International Conference on Computing and Machine Intelligence, ICMI 2025, Michigan, United States, 05/04/2025. https://doi.org/10.1109/ICMI65310.2025.11141195
Schlagwörter: Gradient Boosting Algorithms, GridSearchCV, Hyperparameter tuning, LightGBM, Machine Learning in the semiconductor industry, Mean Absolute Error (MAE), Mean Squared Error (MSE), Photolithography, R-squared value, Semiconductor yield analysis
Relation: info:eu-repo/semantics/altIdentifier/hdl/https://hdl.handle.net/11370/5aac0283-d516-4017-80bc-777cbe95d0d4; info:eu-repo/semantics/altIdentifier/isbn/9798331509132; urn:ISBN:9798331509132
-
11
Autoren: Altamimi, Hamad Younus
Quelle: Theses
Schlagwörter: Airbnb Dubai, Ensemble modeling, Gradient boosting algorithms, Hyperparameter tuning, Random forest ensemble technique, Rental prices prediction
Dateibeschreibung: application/pdf
Relation: https://repository.rit.edu/theses/12033; https://repository.rit.edu/context/theses/article/13167/viewcontent/HAltamimiThesis1_2025.pdf
-
12
Autoren:
Quelle: Eastern-European Journal of Enterprise Technologies
Schlagwörter: Indonesia, машинне навчання, machine learning, моделювання кредитного шахрайства, незбалансовані дані, алгоритми підвищення градієнта, credit fraud modeling, unbalanced data, gradient boosting algorithms
Dateibeschreibung: application/pdf
Verfügbarkeit: https://www.neliti.com/publications/609370/fraud-detection-under-the-unbalanced-class-based-on-gradient-boosting
-
13
Autoren:
Schlagwörter: Gradient Boosting Algorithms, XGBoost, CatBoost, LightGBM, Predictive Modeling
Relation: https://zenodo.org/records/12666689; oai:zenodo.org:12666689; https://doi.org/10.5281/zenodo.12666689
-
14
Autoren: et al.
Weitere Verfasser: et al.
Quelle: ISSN: 0018-9375 ; IEEE Transactions on Electromagnetic Compatibility ; https://hal.archives-ouvertes.fr/hal-03589923 ; IEEE Transactions on Electromagnetic Compatibility, Institute of Electrical and Electronics Engineers, 2020, 62 (6), pp.2512-2519. ⟨10.1109/TEMC.2020.2978429⟩.
Schlagwörter: Lightning Localization, Machine Learning, Transients on Transmission Lines, Gradient Boosting Algorithms, [PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
Relation: info:eu-repo/grantAgreement//737033/EU/Laser Lightning Rod/LLR; hal-03589923; https://hal.archives-ouvertes.fr/hal-03589923; https://hal.archives-ouvertes.fr/hal-03589923/document; https://hal.archives-ouvertes.fr/hal-03589923/file/3.%20Source_localization_Final_Version.pdf
-
15
Autoren:
Weitere Verfasser:
Schlagwörter: rating, validation, calibration, credit risk management, scoring model, neural networks, machine learning, credit risk, scoring, Random Forest, gradient boosting algorithms, logistic regression, decision trees, LightGBM, validace, logistická regrese, rozhodovací stromy, gradient boosting algoritmy, kreditní riziko, řízení kreditního rizika, skóringový model, kalibrace, skóring, strojové učení, neuronové sítě
Dateibeschreibung: application/pdf
Relation: https://vskp.vse.cz/eid/98052
Verfügbarkeit: https://vskp.vse.cz/eid/98052
-
16
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Tephrochronology, Machine-learning, Gradient boosting algorithms, Imbalanced data, South Aegean Active Volcanic Arc
Dateibeschreibung: application/pdf
Relation: EARTH SCIENCE INFORMATICS; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://hdl.handle.net/20.500.12809/9909
-
17
Autoren: Ghorbanali, Mojtaba
Schlagwörter: Price Prediction, Machine learning, Regression analysis, Gradient boosting algorithms, LightGBM, XGBoost, Computer Sciences, Datavetenskap (datalogi)
Dateibeschreibung: application/pdf
Verfügbarkeit: http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-58921
-
18
Autoren: et al.
Quelle: Water
Volume 12
Issue 4Schlagwörter: random forests, Ogallala Aquifer, 2. Zero hunger, gradient boosting algorithms, 0207 environmental engineering, MARS, 02 engineering and technology, 15. Life on land, water quality, 01 natural sciences, 6. Clean water, machine learning, nitrate, 13. Climate action, CART, aquifer vulnerability, 0105 earth and related environmental sciences
Dateibeschreibung: application/pdf
-
19
Autoren: et al.
Schlagwörter: Aquifer vulnerability, CART, Gradient boosting algorithms, Machine learning, MARS, Nitrate, Ogallala aquifer, Random forests, Water quality, geo, envir
Relation: https://hdl.handle.net/2346/92199
Verfügbarkeit: https://hdl.handle.net/2346/92199
-
20
Autoren: Takhar, Hardeep Kaur
Schlagwörter: Communication networks, Cybersecurity, Intrusion Detection, Malware, Worms, Ransomware attacks, Anomaly detection, Border Gateway Protocol, Goodness of fit test, Supervised and unsupervised machine learning, Feature selection, Gradient boosting algorithms
Verfügbarkeit: https://summit.sfu.ca/_flysystem/fedora/2023-05/etd22483.pdf
Full Text Finder
Nájsť tento článok vo Web of Science