Suchergebnisse - "deep learning in robotics and automation"
-
1
Autoren: et al.
Quelle: IEEE Transactions on robotics. 41:5327-5343
Schlagwörter: Deep learning in robotics and automation, learning and adaptive systems, learning from demonstrations, riemannian flow matching, visuomotor policies
Dateibeschreibung: electronic
-
2
Autoren: et al.
Quelle: IEEE Transactions on robotics. 40:438-451
Schlagwörter: Dataset for anomaly detection (AD), deep learning in robotics and automation, failure detection and recovery, probability and statistical models
Dateibeschreibung: print
-
3
Autoren:
Quelle: IEEE Transactions on Robotics. 40:4376-4395
Schlagwörter: perception for grasping and manipulation, FOS: Computer and information sciences, Grasping, Computer Science - Artificial Intelligence, Grippers, Shape, tactile control, Tactile sensors, Dynamics, Computer Science - Robotics, Artificial Intelligence (cs.AI), Deep learning in robotics and automation, Industrial Engineering, Robots, Real-time systems, Robotics (cs.RO)
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/abs/2403.04934
-
4
Autoren: et al.
Quelle: IEEE Robotics and Automation Letters. 3(4):4007-4014
Schlagwörter: Learning and adaptive systems, visual learning, deep learning in robotics and automation
Dateibeschreibung: electronic
-
5
Autoren: et al.
Quelle: IEEE Transactions on Robotics. 39:1244-1259
Schlagwörter: Contact modeling, Technology, 0209 industrial biotechnology, Science & Technology, 4007 Control engineering, mechatronics and robotics, grasping, reactive and sensor-based planning, Robotics, 02 engineering and technology, FORCE, deep learning in robotics and automation, MODEL, 0906 Electrical and Electronic Engineering, Industrial Engineering & Automation, 0801 Artificial Intelligence and Image Processing, 0202 electrical engineering, electronic engineering, information engineering, 0913 Mechanical Engineering
-
6
Autoren: et al.
Quelle: IEEE Transactions on Robotics
Schlagwörter: FOS: Computer and information sciences, Deep Learning in Robotics and Automation, Heuristic algorithms, Latent Space Planning, Manipulation Planning, Planning, Robots, Stacking, Task analysis, Trajectory, Visual Learning, Visualization, Computer Science - Robotics, Computer Science - Machine Learning, 0209 industrial biotechnology, 02 engineering and technology, Robotics (cs.RO), Machine Learning (cs.LG)
Dateibeschreibung: application/pdf
-
7
Autoren: et al.
Quelle: IEEE Transactions on robotics. 39(5):3994-4015
Schlagwörter: deep learning in robotics and automation, Dexterous manipulation, grasping, perception for grasping and manipulation
Dateibeschreibung: print
-
8
Autoren: et al.
Quelle: IEEE Transactions on Cybernetics. 52:10750-10760
Schlagwörter: FOS: Computer and information sciences, Benchmark testing, 0209 industrial biotechnology, Dynamic fusion, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Anomaly detection, 02 engineering and technology, Semantic scene understanding, Roads, Semantics, Computer Science - Robotics, Deep learning in robotics and automation, Mobile robots, 0202 electrical engineering, electronic engineering, information engineering, Feature extraction, Neural Networks, Computer, Robotics (cs.RO), Algorithms, Visualization
Zugangs-URL: http://arxiv.org/pdf/2103.02433
https://pubmed.ncbi.nlm.nih.gov/33760752
http://arxiv.org/abs/2103.02433
https://arxiv.org/pdf/2103.02433.pdf
https://ieeexplore.ieee.org/document/9385989
https://dblp.uni-trier.de/db/journals/corr/corr2103.html#abs-2103-02433
https://www.ncbi.nlm.nih.gov/pubmed/33760752
http://export.arxiv.org/pdf/2103.02433
https://research.polyu.edu.hk/en/publications/dynamic-fusion-module-evolves-drivable-area-and-road-anomaly-dete -
9
Autoren: et al.
Quelle: IEEE Transactions on Robotics
Schlagwörter: FOS: Computer and information sciences, Computer Science - Robotics, 0209 industrial biotechnology, space robotics and automation, Legged Robots, Deep Learning in Robotics and Automation, 02 engineering and technology, Robotics (cs.RO)
Zugangs-URL: https://www.research-collection.ethz.ch/bitstream/20.500.11850/490128/5/Model_free_control_of_jumping_quadruped_robots_in_low_gravity.pdf
http://arxiv.org/abs/2106.09357
https://arxiv.org/pdf/2106.09357.pdf
https://arxiv.org/abs/2106.09357
http://arxiv.org/pdf/2106.09357.pdf
https://www.arxiv-vanity.com/papers/2106.09357/
https://dblp.uni-trier.de/db/journals/corr/corr2106.html#abs-2106-09357
https://arxiv.org/abs/2106.09357
https://ieeexplore.ieee.org/document/9453856 -
10
Autoren: et al.
Quelle: IEEE Robotics and Automation Letters. 4:2348-2355
Schlagwörter: Agricultural automation, computer vision for other robotic applications, deep learning in robotics and automation, robotics in agriculture and forestry, visual learning, Control and Systems Engineering, Human-Computer Interaction, Biomedical Engineering, Mechanical Engineering, Control and Optimization, Artificial Intelligence, Computer Science Applications1707 Computer Vision and Pattern Recognition, 1707, Agricultural Automation, Robotics in Agriculture and Forestry, 0202 electrical engineering, electronic engineering, information engineering, Deep Learning in Robotics and Automation, 02 engineering and technology, Computer Vision for Other Robotic Applications, Visual Learning
Dateibeschreibung: application/pdf
-
11
Autoren: et al.
Quelle: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, 0209 industrial biotechnology, Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Deep Learning in Robotics and Automation, 02 engineering and technology, Machine learning (artificial intelligence), Machine Learning (cs.LG), Mobile robot localization, Computer Science - Robotics, 03 medical and health sciences, Artificial Intelligence (cs.AI), 0302 clinical medicine, Localization and Mapping, Field robotics, Robotics (cs.RO)
Zugangs-URL: http://arxiv.org/abs/2203.05698
-
12
Autoren: et al.
Quelle: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)Schlagwörter: Localization, Deep Learning in Robotics and Automation, Range Sensing, FOS: Computer and information sciences, Computer Science - Robotics, 0209 industrial biotechnology, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Robotics (cs.RO)
Dateibeschreibung: application/application/pdf
Zugangs-URL: https://www.research-collection.ethz.ch/bitstream/20.500.11850/438727/1/1242.pdf
http://arxiv.org/abs/1903.07918
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-07918
https://dblp.uni-trier.de/db/conf/iros/iros2019.html#SchauppBDSC19
https://www.research-collection.ethz.ch/bitstream/20.500.11850/438727/1/1242.pdf
https://www.research-collection.ethz.ch/handle/20.500.11850/438727
http://ui.adsabs.harvard.edu/abs/2019arXiv190307918S/abstract
https://arxiv.org/pdf/1903.07918.pdf
https://arxiv.org/abs/1903.07918
http://hdl.handle.net/20.500.11850/438727 -
13
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IEEE Robotics and Automation Letters, [ISSN: 2377-3766], vol. 4 (2), ( 2019)
accedaCRIS portal de investigación de la Universidad de las Palmas de Gran Canaria
instnameSchlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, 0209 industrial biotechnology, Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, 02 engineering and technology, Machine Learning (cs.LG), Computer Science - Robotics, Artificial Intelligence (cs.AI), Deep learning in robotics and automation, Localization, SLAM, 11. Sustainability, 0202 electrical engineering, electronic engineering, information engineering, Field Robots, Visual learning, 1203 Ciencia de los ordenadores, Robotics (cs.RO)
Zugangs-URL: https://ora.ox.ac.uk/objects/uuid:e181235e-f4e4-408d-8235-6899d922bf59/download_file?safe_filename=
Learning %2Bto%2BSee%2Bthe%2BWood%2Bfor%2Bthe%2BTrees-%2BDeep%2BLaser%2BLocalization%2Bin%2BUrban%2Band%2BNatural%2BEnvironments%2Bon%2Ba%2BCPU.pdf&file_format=application%2Fpdf&type_of_work=Conference+item
http://arxiv.org/abs/1902.10194
http://hdl.handle.net/10553/130230
https://arxiv.org/abs/1902.10194
https://arxiv.org/pdf/1902.10194
http://doi.org/10.1109/LRA.2019.2895264
https://arxiv.org/abs/1902.10194
https://ui.adsabs.harvard.edu/abs/2019arXiv190210194T/abstract
https://dblp.uni-trier.de/db/journals/corr/corr1902.html#abs-1902-10194
https://ieeexplore.ieee.org/document/8626476/
https://ora.ox.ac.uk/objects/uuid:e181235e-f4e4-408d-8235-6899d922bf59
https://doi.org/10.1109/lra.2019.2895264 -
14
Autoren: et al.
Quelle: IEEE Transactions on Robotics. 36:1546-1561
Schlagwörter: 0209 industrial biotechnology, 02 engineering and technology, Target-Driven Visual Navigation, Visual-Based Navigation, Deep Learning in Robotics and Automation, Visual Learning
Zugangs-URL: https://zenodo.org/record/4785793/files/Towards%20Generalization%20in%20Target-Driven%20Visual%20Navigation%20by%20Using%20Deep%20Reinforcement%20Learning.pdf
https://research.unipg.it/handle/11391/1471943
https://ieeexplore.ieee.org/document/9102361
https://dblp.uni-trier.de/db/journals/trob/trob36.html#DevoMCFV20
https://hdl.handle.net/11391/1471943
https://doi.org/10.1109/TRO.2020.2994002 -
15
Autoren: et al.
Quelle: IEEE Robotics and Automation Letters. 5:3509-3516
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, 0209 industrial biotechnology, Big data in robotics and automation, Computer Science - Artificial Intelligence, Computational modeling, 02 engineering and technology, Microstrip, Machine Learning (cs.LG), Computer Science - Robotics, Artificial Intelligence (cs.AI), Deep learning in robotics and automation, Motion and path planning, Robot sensing systems, Task analysis, Fuses, Cloud computing, Robotics (cs.RO)
Zugangs-URL: http://arxiv.org/pdf/1912.12204
http://arxiv.org/abs/1912.12204
http://ieeexplore.ieee.org/document/9013081/
https://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-12204
https://ieeexplore.ieee.org/document/9013081/
https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002274053393025
http://dblp.uni-trier.de/db/journals/ral/ral5.html#LiuWLX20 -
16
Autoren: et al.
Quelle: IEEE Robotics and Automation Letters. 5:2062-2069
Schlagwörter: FOS: Computer and information sciences, Technology, Science & Technology, 4007 Control engineering, mechatronics and robotics, 4602 Artificial intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics, 02 engineering and technology, PSI_VISICS, deep learning in robotics and automation, Localization, 0202 electrical engineering, electronic engineering, information engineering, PSI_4632, mapping, 0913 Mechanical Engineering
Zugangs-URL: https://lirias.kuleuven.be/bitstream/123456789/670196/2/thoma.pdf
http://arxiv.org/abs/2003.09682
http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-09682
https://ieeexplore.ieee.org/document/8977317/
https://lirias.kuleuven.be/3019641
https://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-09682
https://www.research-collection.ethz.ch/handle/20.500.11850/403158
https://www.arxiv-vanity.com/papers/2003.09682/
https://ui.adsabs.harvard.edu/abs/2020arXiv200309682T/abstract
https://arxiv.org/abs/2003.09682v1
https://arxiv.org/pdf/2003.09682.pdf -
17
Autoren: et al.
Quelle: IEEE Robotics and Automation Letters. 5:2935-2942
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, 0209 industrial biotechnology, autonomous agents, Deep learning in robotics and automation, intelligent transportation systems, Statistics - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, 0202 electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), 02 engineering and technology, Machine Learning (cs.LG)
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/pdf/2003.10381
http://arxiv.org/abs/2003.10381
https://mediatum.ub.tum.de/1630683
https://arxiv.org/abs/2003.10381
https://ieeexplore.ieee.org/document/9001185
https://doi.org/10.1109/LRA.2020.2974716
http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-10381
https://cris.unibo.it/handle/11585/806525
http://export.arxiv.org/pdf/2003.10381
http://arxiv.org/pdf/2003.10381.pdf
https://arxiv.org/abs/2003.10381
https://ui.adsabs.harvard.edu/abs/2020arXiv200310381B/abstract
https://ieeexplore.ieee.org/document/9001185
https://doi.org/10.1109/LRA.2020.2974716
https://hdl.handle.net/11585/806525 -
18
Autoren: et al.
Quelle: Yang, C, Yuan, K, Heng, S, Komura, T & Li, Z 2020, ' Learning natural locomotion behaviors for humanoid robots using human bias ', IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2610-2617 . https://doi.org/10.1109/LRA.2020.2972879
Schlagwörter: FOS: Computer and information sciences, Computer Science - Robotics, 0209 industrial biotechnology, Deep learning in robotics and automation, humanoid and bipedal locomotion, learning from demonstration, 02 engineering and technology, Robotics (cs.RO)
Dateibeschreibung: application/pdf
Zugangs-URL: https://www.pure.ed.ac.uk/ws/files/144085854/Learning_natural_locomotion_YANG_DOA22012020_AFV.pdf
http://arxiv.org/abs/2005.10195
https://www.research.ed.ac.uk/en/publications/learning -natural-locomotion-behaviors-for-humanoid-robots-using-h
https://ieeexplore.ieee.org/document/8990011
https://www.research.ed.ac.uk/portal/en/publications/learning -natural-locomotion-behaviors-for-humanoid-robots-using-human-bias(886eb6b9-39d0-418b-987e-93676da8ed9d).html
http://dblp.uni-trier.de/db/journals/ral/ral5.html#YangYHKL20
https://dblp.uni-trier.de/db/journals/ral/ral5.html#YangYHKL20
https://www.pure.ed.ac.uk/ws/files/144085854/Learning_natural_locomotion_YANG_DOA22012020_AFV.pdf
https://arxiv.org/abs/2005.10195
https://dblp.uni-trier.de/db/journals/corr/corr2005.html#abs-2005-10195
http://arxiv.org/pdf/2005.10195.pdf
https://ui.adsabs.harvard.edu/abs/2020arXiv200510195Y/abstract
https://hdl.handle.net/20.500.11820/886eb6b9-39d0-418b-987e-93676da8ed9d
https://www.pure.ed.ac.uk/ws/files/144085854/Learning_natural_locomotion_YANG_DOA22012020_AFV.pdf -
19
Deep Reinforcement Learning for Instruction Following Visual Navigation in 3D Maze-Like Environments
Autoren:
Quelle: IEEE Robotics and Automation Letters. 5:1175-1182
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Deep learning in robotics and automation, visual learning, visual-based navigation, 01 natural sciences, 0105 earth and related environmental sciences
Zugangs-URL: https://ieeexplore.ieee.org/document/8957297
https://research.unipg.it/handle/11391/1458050
http://dblp.uni-trier.de/db/journals/ral/ral5.html#DevoCV20
https://dblp.uni-trier.de/db/journals/ral/ral5.html#DevoCV20
https://doi.org/10.1109/LRA.2020.2965857
https://hdl.handle.net/11391/1458050
http://ieeexplore.ieee.org/servlet/opac?punumber=7083369
https://doi.org/10.1109/LRA.2020.2965857 -
20
Autoren: et al.
Quelle: IEEE Robotics and Automation Letters, 5 (2)
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, 0209 industrial biotechnology, optimization and optimal control, motion control, Deep learning in robotics and automation, redundant robots, robust/adaptive control of robotic systems, Systems and Control (eess.SY), 02 engineering and technology, Electrical Engineering and Systems Science - Systems and Control, Machine Learning (cs.LG), Computer Science - Robotics, FOS: Electrical engineering, electronic engineering, information engineering, 0202 electrical engineering, electronic engineering, information engineering, Robotics (cs.RO)
Dateibeschreibung: application/application/pdf
Zugangs-URL: http://arxiv.org/pdf/1912.10360
http://arxiv.org/abs/1912.10360
https://arxiv.org/abs/1912.10360
https://arxiv.org/pdf/1912.10360.pdf
https://ui.adsabs.harvard.edu/abs/2019arXiv191210360N/abstract
https://ieeexplore.ieee.org/abstract/document/9006856
https://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-10360
https://publications.rwth-aachen.de/record/795966
https://doi.org/10.1109/LRA.2020.2975727
http://dblp.uni-trier.de/db/journals/ral/ral5.html#NubertKBAT20
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3311035
http://hdl.handle.net/20.500.11850/406451
Full Text Finder
Nájsť tento článok vo Web of Science