Suchergebnisse - "deep autoencoder"
-
1
Autoren: et al.
Quelle: Ocean Engineering. 312(Part 1)
Schlagwörter: Feature fusion Probabilistic modeling Deep autoencoder Spatiotemporal forecasting Phased framework approach Trajectory reconstruction, Computer Science, Datavetenskap
Dateibeschreibung: electronic
-
2
Autoren: et al.
Quelle: CAAI Transactions on Intelligence Technology, Vol 9, Iss 6, Pp 1361-1376 (2024)
Schlagwörter: QA76.75-76.765, network embedding, Computational linguistics. Natural language processing, 0202 electrical engineering, electronic engineering, information engineering, dynamic networks, low‐dimensional feature space, deep autoencoder, Computer software, 02 engineering and technology, P98-98.5, sparse structure
-
3
Autoren:
Quelle: Smart Innovation, Systems and Technologies ISBN: 9789819609932
Villani, F, Scarpiniti, M & Uncini, A 2025, A Two-Stage Neural Network for Speech Signal Reconstruction from Mel Spectrograms. in Smart Innovation, Systems and Technologies. https://doi.org/10.1007/978-981-96-0994-9_25Schlagwörter: Mel spectrogram inversion, phase reconstruction, speech enhancement, time-frequency representation, deep autoencoder
Dateibeschreibung: application/pdf
-
4
Autoren: et al.
Quelle: Journal of Nigerian Society of Physical Sciences, Vol 7, Iss 3 (2025)
Schlagwörter: Adversarial attacks, Deep autoencoder, Deep learning, Intrusion detection, Cyber-physical systems, Physics, QC1-999
Dateibeschreibung: electronic resource
-
5
Autoren: et al.
Quelle: International journal of electrical and computer engineering systems
Volume 15
Issue 6Schlagwörter: Process Mining, Deep Learning, Artificial Intelligence, Deep Autoencoder, Long Short Term Memory
Dateibeschreibung: application/pdf
-
6
Autoren:
Quelle: IEEE Transactions on Computational Social Systems. 11:3444-3456
-
7
Autoren:
Quelle: Volume: 6, Issue: 1113-124
Mühendislik Bilimleri ve Araştırmaları DergisiSchlagwörter: Deep Learning, Coding, Information Theory and Compression, Derin Öğrenme, Speech Compression, Causal Convolutional Neural Network, Residual Vector Quantization, Deep Autoencoder, Konuşma Sıkıştırma, Nedensel Evrişimsel Sinir Ağları, Artık Vektör Nicemlemesi, Derin Oto kodlayıcı, Kodlama, Bilgi Teorisi ve Sıkıştırma
Dateibeschreibung: application/pdf
-
8
Autoren: et al.
Quelle: Algorithms, Vol 18, Iss 11, p 704 (2025)
Schlagwörter: anomaly detection, Transformer, deep autoencoder, Gaussian mixture model, coal-fired power plant, Industrial engineering. Management engineering, T55.4-60.8, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
-
9
Autoren: et al.
Quelle: Biology, Vol 14, Iss 11, p 1622 (2025)
Schlagwörter: deep autoencoder, data compression, genomic prediction, whole-genome sequencing, Biology (General), QH301-705.5
Dateibeschreibung: electronic resource
-
10
Autoren: et al.
Quelle: Remote Sensing, Vol 17, Iss 21, p 3622 (2025)
Schlagwörter: deep autoencoder, attention mechanism, hyperspectral unmixing, abundance estimation, Science
Dateibeschreibung: electronic resource
-
11
Autoren:
Quelle: Electronic Research Archive, Vol 32, Iss 5, Pp 3202-3229 (2024)
-
12
Autoren: et al.
Quelle: IEEE Access, Vol 12, Pp 98239-98253 (2024)
Schlagwörter: group formation, Hard balanced clustering, 4. Education, 0202 electrical engineering, electronic engineering, information engineering, deep clustering, deep autoencoder, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, balanced clustering, TK1-9971
-
13
Autoren: et al.
Quelle: IEEE Access, Vol 12, Pp 174441-174454 (2024)
-
14
Autoren: et al.
Quelle: Journal of intelligent information systems (2023): 1–25. doi:10.1007/s10844-023-00819-8
info:cnr-pdr/source/autori:Nunziato Cassavia, Luca Caviglione, Massimo Guarascio, Angelica Liguori, Marco Zuppelli/titolo:Learning autoencoder ensembles for detecting malware hidden communications in IoT ecosystems/doi:10.1007%2Fs10844-023-00819-8/rivista:Journal of intelligent information systems/anno:2023/pagina_da:1/pagina_a:25/intervallo_pagine:1–25/volumeSchlagwörter: Covert Channel, Intelligent cyber attack detection system, 0202 electrical engineering, electronic engineering, information engineering, Ensemble Method, 02 engineering and technology, Deep autoencoder
Dateibeschreibung: application/pdf
-
15
Autoren:
Schlagwörter: ddc:330, G21, C45, N24, L21, E58, C38, Business model of banks, Balance sheet characteristics, Cluster analysis, Deep learning, Autoencoders, Deep autoencoder-based clustering
Relation: https://hdl.handle.net/10419/330416
-
16
Autoren: et al.
Schlagwörter: Cell Biology, Neuroscience, Physiology, Biotechnology, Mental Health, novel treatment approaches, extrapyramidal movement sub, extrapyramidal movement disorders, exploratory analysis showed, approach enables identification, subtle tissue anomalies, normative deep autoencoder, influential features contributing, features 8217, apparent diffusion coefficient, cerebellar white matter, cerebellar gray matter, learning p,
+features%22">xlink "> features, telangiectasia using deep, shap scores revealed, pallidum perfusion underestimated, diffusion reconstruction errors, %22">xlink ">, diffusion features, cerebellar diffusion, subcortical anomalies, reconstruction errors, normative self, perfusion features -
17
Autoren: et al.
Schlagwörter: Cell Biology, Neuroscience, Physiology, Biotechnology, Mental Health, novel treatment approaches, extrapyramidal movement sub, extrapyramidal movement disorders, exploratory analysis showed, approach enables identification, subtle tissue anomalies, normative deep autoencoder, influential features contributing, features 8217, apparent diffusion coefficient, cerebellar white matter, cerebellar gray matter, learning p,
+features%22">xlink "> features, telangiectasia using deep, shap scores revealed, pallidum perfusion underestimated, diffusion reconstruction errors, %22">xlink ">, diffusion features, cerebellar diffusion, subcortical anomalies, reconstruction errors, normative self, perfusion features -
18
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Acoustic emission, adhesive bonding, CFRP composite, deep autoencoder, joggled lap shear joint, k-mean, structure lightweighting
Dateibeschreibung: ELETTRONICO
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001418398900001; volume:15; issue:3; numberofpages:27; journal:APPLIED SCIENCES; https://hdl.handle.net/11589/286625
-
19
Autoren:
Quelle: Journal of Cybersecurity and Privacy ; Volume 5 ; Issue 1 ; Pages: 3
Schlagwörter: attack classification, reinforcement learning, deep autoencoder, support vector machine, improved flamingo search algorithm, tent chaotic map
Dateibeschreibung: application/pdf
Relation: https://dx.doi.org/10.3390/jcp5010003
Verfügbarkeit: https://doi.org/10.3390/jcp5010003
-
20
Autoren: et al.
Quelle: Front Psychiatry
Frontiers in Psychiatry, Vol 15 (2024)Schlagwörter: Psychiatry, RC435-571, deep autoencoder, image generation, sMRI, ASD, image classification
Full Text Finder
Nájsť tento článok vo Web of Science