Suchergebnisse - "cutting plane/branch and bound algorithm"
-
1
Autoren:
Quelle: Journal of the Operational Research Society. 43:443-457
Schlagwörter: Computational methods for problems pertaining to operations research and mathematical programming, 0211 other engineering and technologies, node packing, Integer programming, cutting plane/branch-and-bound algorithm, heuristics, 0102 computer and information sciences, 02 engineering and technology, Programming involving graphs or networks, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/90327
https://doi.org/10.1057/jors.1992.71
https://link.springer.com/content/pdf/10.1057%2Fjors.1992.71.pdf
https://rd.springer.com/content/pdf/10.1057%2Fjors.1992.71.pdf
https://link.springer.com/article/10.1057/jors.1992.71
https://www.tandfonline.com/doi/abs/10.1057/jors.1992.71 -
2
Autoren:
Quelle: The Journal of the Operational Research Society, 1992 May 01. 43(5), 443-457.
Zugangs-URL: https://www.jstor.org/stable/2583564
-
3
Autoren:
Weitere Verfasser:
Schlagwörter: mixed 0-1 programming problem, single machine scheduling, valid inequalities, cutting plane/branch and bound algorithm
Zugangs-URL: https://www.bib.irb.hr/34794
-
4
Autoren: et al.
Weitere Verfasser: et al.
Quelle: European Journal of Operational Research. 127:383-393
Schlagwörter: mixed 0-1 programming problem, single machine scheduling, valid inequalities, branch and bound/cutting plane algorithm, Combinatorial optimization, cutting plane/branch and bound algorithm, Deterministic scheduling theory in operations research, 0211 other engineering and technologies, 02 engineering and technology, cutting plane algorithm, mixed \(0-1\) programming problem, single machine scheduling problem, Mixed integer programming, Polyhedral combinatorics, branch-and-bound, branch-and-cut
Dateibeschreibung: application/xml
Zugangs-URL: https://www.bib.irb.hr/39061
https://www.bib.irb.hr/34889
https://www.bib.irb.hr/34890
https://zbmath.org/1545199
https://doi.org/10.1016/s0377-2217(99)00493-2
https://elibrary.ru/item.asp?id=413897
https://ideas.repec.org/a/eee/ejores/v127y2000i2p383-393.html
https://dblp.uni-trier.de/db/journals/eor/eor127.html#Soric00
http://www.sciencedirect.com/science/article/pii/S0377221799004932
https://www.sciencedirect.com/science/article/pii/S0377221799004932
https://EconPapers.repec.org/RePEc:eee:ejores:v:127:y:2000:i:2:p:383-393 -
5
Autoren:
Quelle: Annals of Operations Research; Aug2025, Vol. 351 Issue 1, p965-991, 27p
-
6
Autoren: Soríc, Kristina1 ksoric@efzg.hr
Quelle: European Journal of Operational Research. 12/01/2000, Vol. 127 Issue 2, p383-393. 11p. 2 Charts.
Schlagwörter: *ALGORITHMS, *OPERATIONS research, *RESEARCH
-
7
Autoren:
Quelle: Mathematical Programming; Feb1992, Vol. 54 Issue 1-3, p353-367, 15p
-
8
Autoren:
Quelle: Journal of Combinatorial Optimization; May2024, Vol. 47 Issue 4, p1-37, 37p
-
9
Autoren:
Quelle: Croatian Operational Research Review; 2024, Vol. 15 Issue 2, p199-212, 14p
-
10
Autoren: Hugo, Pastijn1
Quelle: Engineering & Process Economics. Jun79, Vol. 4 Issue 2/3, p313-323. 11p.
Schlagwörter: *STOCKS (Finance), *ALGORITHMS, *LINEAR programming, *QUALITY control, *COST, PSYCHOLOGY
-
11
Autoren:
Quelle: Networks; Jan2020, Vol. 75 Issue 1, p86-94, 9p
Schlagwörter: MATHEMATICAL equivalence, POLYTOPES, POLYHEDRA, POLYNOMIALS, COMBINATORICS, RELAXATION for health
-
12
Autoren:
Quelle: Transactions in GIS; Aug2019, Vol. 23 Issue 4, p645-671, 27p
Schlagwörter: REAL property acquisition, INTERDISCIPLINARY research, DATA modeling, PROBLEM solving
-
13
Autoren:
Quelle: Soft Computing - A Fusion of Foundations, Methodologies & Applications; May2019, Vol. 23 Issue 9, p3013-3027, 15p
Schlagwörter: MATHEMATICAL equivalence, ALGORITHMS, HEURISTIC
-
14
Autoren:
Weitere Verfasser:
Schlagwörter: 519.876.5
Dateibeschreibung: 166-176
Relation: Вісник Тернопільського державного технічного університету, 2 (12), 2007; Scientific Journal of the Ternopil State Technical University, 2 (12), 2007; ftp://dimacs.rutgers.edu/pub/challenge/graph; 1. De Wera D. An introduction to timetabling // European Journal of Operations Research. – 1985. - № 19. – P. 151 – 162.; 2. Fred C. Chow, John L. Hennesy. Register allocation by priority-based coloring. In Proceedings of the ACM SYGPLAN 84 Symposium on Compiler Construction. - New York: ACM, 1984. – P. 222 – 223.; 3. Fred C. Chow, John L. Hennesy. The priority-based coloring approach to register allocation // ACM Transactions on Programming Languages and Systems. – 1990. – № 12(4). – P. 501 – 536.; 4. Gamst A. Some lower bounds for a class of frequency assignment problems // IEEE Transactions of Vehicular Echnology. – 1986. - № 35(1). – P. 8 – 14.; 5. Arkin M., Silverberg B. Scheduling jobs with fixed start and end times // Discrete Applied Mathematics. – 1987. – № 18.; 6. Mikhail J. Atallan. Algorithms and Theory of Computation Handbook. U.S.A, New York: CRC Press, 1999.; 7. Grotschel M., Junger M., Reinelt G. An application of combinatorial optimization to statistical physics and Circuit layout design // Operations Research. – 1988. - № 36(3). – P. 493 – 513.; 8. Agarwal S., Belongie S. On the non-optimality of four color coding of image partitions // IEEE Proceedings of Int. Conf. Image Processing. – 2002.; 9. Алексеев В.А., Носов В.А. NP-полные задачи и их полиномиальные варианты. Обзор. Обозрение промышленной и прикладной математики. - 1997. - т. 4, вып. 2. - С.165 – 193.; 11. Craig A. Morgenstern, Harry D. Shapiro. Coloration neighborhood structures for general graph coloring. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, Jan. 1990. Society for Industrial and Applied Mathematics, Philadelphia. – 1990.; 12. Carrahan R., Pardalos P. M. An exact algorithm for the maximum clique problem // Operations Research Letters. – 1990. - № 9. – P. 375 – 382.; 13. Babel L. Finding maximum cliques in arbitrary and special graphs // Computing. – 1991. - № 46. – P. 321–341.; 14. Babel L., Tinhofer G. A branch and bound algorithm for the maximum clique problem // Journal of Global Optimization. – 1994. - № 4.; 15. Balas E., J. Xue. Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs // SIAM Journal on Computing. – 1991. - № 20(2). – P. 209 – 221.; 16. Balas E., Chang Sung Yu. Finding a maximum clique in arbitrary graph // SIAM Journal on Computing. – 1986. - № 15(4). – P. 1054 – 1068.; 17. Mannino C., Sassano A. An exact algorithm for the maximum cardinality stable set problem // Networks pages, ftp://dimacs.rutgers.edu/pub/challenge/graph. - 1993.; 18. Nemhauser G. L., Sigismondi G. L. A strong cutting plane. Branch and bound algorithm for node packing // Journal of Operational Research Society. – 1992. - № 43(5).; 19. de Klerk E., Pasechnik D. V. On approximate graph colouring and MAX-k-cut algorithms based on the 9-function // Journal of Combinatorial Optimization. – 2004. - № 8(2004).; 20. Kochenberger G.A., Glover F., Alidaee B., Rego C., An Uncostrained quadratic binary programming approach to the vertex coloring problem // Annals of Operations Research. – 2005. - № 139.; 21. David S. Johnson. Approximation algorithm for combinatorial problem // Journal of Computer and System Sciences. – 1974. - № 9. – P. 256 – 278.; 22. David S. Johnson. Worst case behavior of graph coloring algorithms // In Proceedings of 5th Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, Winnipeg, Canada. – 1974. – P. 513 – 527.; 23. Pittel B. On the probable behavior of some algorithm for finding the stability number of graph // Mathematical Proceedings of Cambridge Philosophical Society. – 1982. - № 92. – P. 511 – 526.; 24. Boros E., Hammer P. Pseudo-Boolean optimization // Discrete Applied Mathematics. – 2002. – № 123 (1-3).; 25. Mertz P., Freisleben B. Genetic algorithms for binary quadratic programming // In Proceedings of the 1999 International Genetic and Evolutionary Computational Conference (GECCO’99), Morgan Kaufmann. – 1999.; 1. De Wera D. An introduction to timetabling, European Journal of Operations Research, 1985, No 19, P. 151 – 162.; 2. Fred C. Chow, John L. Hennesy. Register allocation by priority-based coloring. In Proceedings of the ACM SYGPLAN 84 Symposium on Compiler Construction, New York: ACM, 1984, P. 222 – 223.; 3. Fred C. Chow, John L. Hennesy. The priority-based coloring approach to register allocation, ACM Transactions on Programming Languages and Systems, 1990, No 12(4), P. 501 – 536.; 4. Gamst A. Some lower bounds for a class of frequency assignment problems, IEEE Transactions of Vehicular Echnology, 1986, No 35(1), P. 8 – 14.; 5. Arkin M., Silverberg B. Scheduling jobs with fixed start and end times, Discrete Applied Mathematics, 1987, No 18.; 7. Grotschel M., Junger M., Reinelt G. An application of combinatorial optimization to statistical physics and Circuit layout design, Operations Research, 1988, No 36(3), P. 493 – 513.; 8. Agarwal S., Belongie S. On the non-optimality of four color coding of image partitions, IEEE Proceedings of Int. Conf. Image Processing, 2002.; 9. Alekseev V.A., Nosov V.A. NP-polnye zadachi i ikh polinomialnye varianty. Obzor. Obozrenie promyshlennoi i prikladnoi matematiki, 1997, V. 4, Iss. 2, P.165 – 193.; 11. Craig A. Morgenstern, Harry D. Shapiro. Coloration neighborhood structures for general graph coloring. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, Jan. 1990. Society for Industrial and Applied Mathematics, Philadelphia, 1990.; 12. Carrahan R., Pardalos P. M. An exact algorithm for the maximum clique problem, Operations Research Letters, 1990, No 9, P. 375 – 382.; 13. Babel L. Finding maximum cliques in arbitrary and special graphs, Computing, 1991, No 46, P. 321–341.; 14. Babel L., Tinhofer G. A branch and bound algorithm for the maximum clique problem, Journal of Global Optimization, 1994, No 4.; 15. Balas E., J. Xue. Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs, SIAM Journal on Computing, 1991, No 20(2), P. 209 – 221.; 16. Balas E., Chang Sung Yu. Finding a maximum clique in arbitrary graph, SIAM Journal on Computing, 1986, No 15(4), P. 1054 – 1068.; 17. Mannino C., Sassano A. An exact algorithm for the maximum cardinality stable set problem, Networks pages, ftp://dimacs.rutgers.edu/pub/challenge/graph, 1993.; 18. Nemhauser G. L., Sigismondi G. L. A strong cutting plane. Branch and bound algorithm for node packing, Journal of Operational Research Society, 1992, No 43(5).; 19. de Klerk E., Pasechnik D. V. On approximate graph colouring and MAX-k-cut algorithms based on the 9-function, Journal of Combinatorial Optimization, 2004, No 8(2004).; 20. Kochenberger G.A., Glover F., Alidaee B., Rego C., An Uncostrained quadratic binary programming approach to the vertex coloring problem, Annals of Operations Research, 2005, No 139.; 21. David S. Johnson. Approximation algorithm for combinatorial problem, Journal of Computer and System Sciences, 1974, No 9, P. 256 – 278.; 22. David S. Johnson. Worst case behavior of graph coloring algorithms, In Proceedings of 5th Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, Winnipeg, Canada, 1974, P. 513 – 527.; 23. Pittel B. On the probable behavior of some algorithm for finding the stability number of graph, Mathematical Proceedings of Cambridge Philosophical Society, 1982, No 92, P. 511 – 526.; 24. Boros E., Hammer P. Pseudo-Boolean optimization, Discrete Applied Mathematics, 2002, No 123 (1-3).; 25. Mertz P., Freisleben B. Genetic algorithms for binary quadratic programming, In Proceedings of the 1999 International Genetic and Evolutionary Computational Conference (GECCO’99), Morgan Kaufmann, 1999.; http://elartu.tntu.edu.ua/handle/lib/29087
Verfügbarkeit: http://elartu.tntu.edu.ua/handle/lib/29087
-
15
Autoren: et al.
Quelle: Soft Computing - A Fusion of Foundations, Methodologies & Applications; Mar2018, Vol. 22 Issue 6, p2025-2043, 19p
-
16
Autoren: et al.
Quelle: Combinatorial Optimization (9783319455860); 2016, p201-212, 12p
-
17
Autoren:
Quelle: Mathematical Programming Computation; Mar2017, Vol. 9 Issue 1, p39-59, 21p
-
18
Autoren: et al.
Quelle: Combinatorial Optimization: Third International Symposium, ISCO 2014, Lisbon, Portugal, March 5-7, 2014, Revised Selected Papers; 2014, p87-99, 13p
-
19
Autoren:
Quelle: INFOR; Nov2014, Vol. 52 Issue 4, p185-196, 12p
-
20
Autoren:
Quelle: Journal of the Operational Research Society; Jul2014, Vol. 65 Issue 7, p1133-1142, 10p
Full Text Finder
Nájsť tento článok vo Web of Science