Suchergebnisse - "convolutional autoencoder(CAE)"
-
1
Autoren: et al.
Quelle: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 18, Pp 2602-2617 (2025)
-
2
Autoren: et al.
Quelle: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 71:831-841
Schlagwörter: Male, Adult, Gestures, Signal Processing, Computer-Assisted, Hand, Armband, convolutional autoencoder (CAE), hand gesture recognition (HGR), wearable ultrasound (US), Pattern Recognition, Automated, Wearable Electronic Devices, Young Adult, Humans, Female, Algorithms, Ultrasonography, Unsupervised Machine Learning
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/38787674
-
3
Autoren: et al.
Quelle: International Journal of Computational Intelligence Systems, Vol 18, Iss 1, Pp 1-18 (2025)
Schlagwörter: Technical indicators, Multi-factor model, Transformer, Convolutional autoencoder (CAE), Stock trend prediction, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1875-6883
-
4
Autoren: YAN Jie, ZHANG Yefei, ZHANG Xianfei
Quelle: Jisuanji gongcheng, Vol 51, Iss 1, Pp 295-303 (2025)
Schlagwörter: electrocardiogram(ecg), ecg recognition, convolutional autoencoder(cae), residual network(resnet), signal preprocessing, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
5
Autoren:
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-15 (2025)
Schlagwörter: Convolutional autoencoder (CAE), Convolutional neural networks (CNN), Fully-connected neural networks (FNN), Computational fluid dynamics (CFD), Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
6
Autoren:
Weitere Verfasser:
Quelle: IEEE Transactions on Geoscience and Remote Sensing. 62:1-16
Schlagwörter: Convolutional autoencoder (CAE), deep learning (DL), hierarchical loss function, multiresolution, multitemporal analysis, unsupervised change detection (CD), unsupervised learning
Dateibeschreibung: application/pdf
-
7
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Wireless Sensor Networks (WSNs), Convolutional Autoencoder (CAE), Gramian Angular Field (GAF), Conditional Generative Adversarial Networks (Conditional GANs), sensor faults, Subject Categories::G420 Networks and Communications
Relation: https://ieeexplore.ieee.org/document/10919044; http://hdl.handle.net/10547/626621; IEEE Sensors Journal
-
8
Autoren: et al.
Quelle: Processes ; Volume 13 ; Issue 4 ; Pages: 1093
Schlagwörter: reduced order model (ROM), hydrogen-enriched combustion, convolutional autoencoder (CAE), fully connected autoencoder (FCAE), hyperparameter setting
Geographisches Schlagwort: agris
Dateibeschreibung: application/pdf
Relation: Process Control and Monitoring; https://dx.doi.org/10.3390/pr13041093
Verfügbarkeit: https://doi.org/10.3390/pr13041093
-
9
Autoren: et al.
Quelle: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 71 (7)
Schlagwörter: Armband, convolutional autoencoder (CAE), hand gesture recognition (HGR), wearable ultrasound (US)
Zugangs-URL: http://hdl.handle.net/20.500.11850/683989
-
10
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IEEE Internet of Things Journal. 9:7715-7730
Schlagwörter: CROWD, convolutional autoencoder (CAE), impulse radio ultra-wideband (IR-UWB) radar, radar-based people counting (RPC), Radar, Internet of Things, 02 engineering and technology, bidirectional recurrent neural network (Bi-RNN), TRACKING, Clutter, Deep learning (DL), 0202 electrical engineering, electronic engineering, information engineering, SMART CITIES, Feature extraction, Training, Radar clutter, Radar cross-sections
Zugangs-URL: https://ieeexplore.ieee.org/document/9540889
-
11
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Sensors (Basel)
Sensors, Vol 24, Iss 20, p 6553 (2024)Schlagwörter: convolutional autoencoder(CAE), autoencoder, convolutional autoencoder (CAE), Engineering, Chemical technology, Information and computing sciences, weld strength prediction, ultrasonic welding (USW), TP1-1185, Article, weld defect detection
Dateibeschreibung: application/pdf
-
12
Autoren: et al.
Quelle: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 15, Pp 284-296 (2022)
Schlagwörter: convolutional autoencoder (CAE), Ocean engineering, remote sensing, Autoencoder (AE), QC801-809, Geophysics. Cosmic physics, 0211 other engineering and technologies, deep learning, multisensor data fusion, 02 engineering and technology, 0101 mathematics, TC1501-1800, 01 natural sciences
-
13
Autoren:
Schlagwörter: Engineering, Information and computing sciences, weld strength prediction, autoencoder, weld defect detection, convolutional autoencoder(CAE), ultrasonic welding (USW)
-
14
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IEEE Transactions on Industry Applications. 57:3272-3281
Schlagwörter: ta222, 13. Climate action, solar PV power forecasting, sky image, 0202 electrical engineering, electronic engineering, information engineering, Convolutional autoencoder (CAE), minute time scale, fi=Sähkötekniikka|en=Electrical Engineering, 02 engineering and technology, spatiotemporal feature, 7. Clean energy
Dateibeschreibung: fi=kokoteksti; en=fulltext; true
-
15
Autoren: et al.
Quelle: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 13, Pp 1426-1437 (2020)
Schlagwörter: convolutional autoencoder (CAE), pear orchard, QC801-809, Geophysics. Cosmic physics, 0211 other engineering and technologies, deep learning, 04 agricultural and veterinary sciences, 02 engineering and technology, Canopy averaged chlorophyll content (CACC), Ocean engineering, hyperspectral (HS) data, 0401 agriculture, forestry, and fisheries, Gaussian process regression (GPR), TC1501-1800
Zugangs-URL: https://ieeexplore.ieee.org/ielx7/4609443/8994817/09050560.pdf
https://doaj.org/article/021ee32b52ce425c91b578ef0d36ccb1
https://ieeexplore.ieee.org/document/9050560/
https://ui.adsabs.harvard.edu/abs/2020IJSTA..13.1426P/abstract
http://eprints.iisc.ac.in/65531/
https://doi.org/10.1109/JSTARS.2020.2983000
https://dblp.uni-trier.de/db/journals/staeors/staeors13.html#PaulPIUNK20 -
16
Autoren: et al.
Quelle: Remote Sensing, Vol 15, Iss 23, p 5570 (2023)
Schlagwörter: anomaly detection, hyperspectral image, graph attention network (GAT), convolutional autoencoder (CAE), Science
Relation: https://www.mdpi.com/2072-4292/15/23/5570; https://doaj.org/toc/2072-4292; https://doaj.org/article/a6971d0c7fbd49b387ea1f8e7ba11002
-
17
Autoren:
Quelle: Electronics, Vol 12, Iss 3, p 771 (2023)
Schlagwörter: deep neural network, array imperfection, direction of arrival (DOA), autoencoder (AE), convolutional autoencoder (CAE), Electronics, TK7800-8360
Relation: https://www.mdpi.com/2079-9292/12/3/771; https://doaj.org/toc/2079-9292; https://doaj.org/article/3a534050891d4267a89745a21760832d
-
18
Autoren:
Quelle: Entropy, Vol 25, Iss 1316, p 1316 (2023)
Schlagwörter: contact fatigue, feature extraction, health indexes (HIs), degradation prediction, temporal convolutional network (TCN), convolutional autoencoder (CAE), Science, Astrophysics, QB460-466, Physics, QC1-999
Relation: https://www.mdpi.com/1099-4300/25/9/1316; https://doaj.org/toc/1099-4300; https://doaj.org/article/359040aff2754f5fb3b921e464c19403
-
19
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Elements
Schlagwörter: Spontaneous breathing, Machine learning, Convolutional Autoencoder (CAE), Mechanical ventilation
Verfügbarkeit: https://scholarbank.nus.edu.sg/handle/10635/212801
-
20
Autoren: et al.
Quelle: Mathematics ; Volume 10 ; Issue 22 ; Pages: 4254
Schlagwörter: composite materials, Convolutional AutoEncoder (CAE), delamination, mechanoluminescent (ML) sensor, non-contact sensing, structural health monitoring
Dateibeschreibung: application/pdf
Relation: E: Applied Mathematics; https://dx.doi.org/10.3390/math10224254
Verfügbarkeit: https://doi.org/10.3390/math10224254
Full Text Finder
Nájsť tento článok vo Web of Science