Suchergebnisse - "adversarial autoencoder (AAE)"
-
1
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. :307-314
Schlagwörter: 0301 basic medicine, Adversarial Autoencoder (AAE), 03 medical and health sciences, Segmentation, 0302 clinical medicine, [INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], Generation, Loss, Cerebral Organoid, t-SNE, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Zugangs-URL: https://hal.science/hal-03528008v1
-
2
Autoren: et al.
Quelle: IEEE Transactions on Geoscience and Remote Sensing. 60:1-12
Schlagwörter: Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Activity Classification, Feature Mapping, 02 engineering and technology, Activity classification, Machine Learning (cs.LG), Variational Autoencoder, deep learning (DL), Deep Learning, passive WiFi radar (PWR), feature mapping, micro-Doppler spectrogram (μ-DS), FOS: Electrical engineering, electronic engineering, information engineering, 0202 electrical engineering, electronic engineering, information engineering, adversarial autoencoder (AAE), variational autoencoder (VAE), Electrical Engineering and Systems Science - Signal Processing, Micro-Doppler Spectrogram, Adversarial Autoencoder, Passive WiFi Radar
Dateibeschreibung: application/pdf
-
3
Autoren:
Quelle: Algorithms, Vol 12, Iss 6, p 122 (2019)
Schlagwörter: image clustering, convolutional autoencoder (CAE), adversarial autoencoder (AAE), stacked autoencoder (SAE), Industrial engineering. Management engineering, T55.4-60.8, Electronic computers. Computer science, QA75.5-76.95
Relation: https://www.mdpi.com/1999-4893/12/6/122; https://doaj.org/toc/1999-4893; https://doaj.org/article/caae9c3398a34723a735c3518ada5b7f
-
4
Autoren: et al.
Schlagwörter: Training, Hidden Markov models, Probabilistic logic, Analytical models, Generative adversarial networks, Deep learning, Data models, Adversarial autoencoder (AAE), energy disaggregation, nonintrusive load monitoring (NILM), online energy disaggregation, probabilistic energy disaggregation, residential energy disaggregation, Load Disaggregation
Relation: IEEE Transactions On Industrial Informatics; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://doi.org/10.1109/TII.2022.3150334; https://hdl.handle.net/20.500.13091/3155; 18; 12; 8399; 8408; WOS:000862429800007; Q1
-
5
Autoren: Zhu, Yanming
Schlagwörter: Directed acyclic convolutional neural network (DACNN), Latent fingerprints, Adversarial autoencoder (AAE)
Dateibeschreibung: application/pdf
Nájsť tento článok vo Web of Science
Full Text Finder