Suchergebnisse - "Wound Healing genetics"

  1. 1

    Quelle: FEBS Lett
    Thiagarajan, L, Sanchez-Alvarez, R, Kambara, C, Rajasekar, P, Wang, Y, Halloy, F, Hall, J, Stark, H-J, Martin, I, Boukamp, P & Kurinna, S 2025, 'miRNA-29 regulates epidermal and mesenchymal functions in skin repair', FEBS Letters, vol. 599, no. 12, pp. 1795-1817. https://doi.org/10.1002/1873-3468.70051
    FEBS Letters

    Dateibeschreibung: application/application/pdf

  2. 2
  3. 3
  4. 4

    Quelle: Peniche Silva, C J, De La Vega, R E, Panos, J, Joris, V, Evans, C H, Balmayor, E R & van Griensven, M 2023, 'MiRNAs as Potential Regulators of Enthesis Healing : Findings in a Rodent Injury Model', International journal of molecular sciences, vol. 24, no. 10, 8556. https://doi.org/10.3390/ijms24108556

    Relation: info:eu-repo/semantics/altIdentifier/pmid/37239902; info:eu-repo/semantics/altIdentifier/pissn/1661-6596; info:eu-repo/semantics/altIdentifier/eissn/1422-0067

  5. 5
  6. 6
  7. 7
  8. 8

    Quelle: PLOS Pathogens

    Dateibeschreibung: application/pdf

    Relation: https://doi.org/10.1371/journal.ppat.1008511; Tipton, C. D., Wolcott, R. D., Sanford, N. E., Miller, C., Pathak, G., Silzer, T. K., Sun, J., Fleming, D., Rumbaugh, K. P., Little, T. D., Phillips, N., & Phillips, C. D. (2020). Patient genetics is linked to chronic wound microbiome composition and healing. PLoS pathogens, 16(6), e1008511. https://doi.org/10.1371/journal.ppat.1008511; https://hdl.handle.net/20.500.12503/31925; 16

  9. 9
  10. 10
  11. 11

    Weitere Verfasser: Byung Pil Cho Yeo Wool Kang Won Gil Cho et al.

    Quelle: Journal of Receptors and Signal Transduction. 37:416-421

  12. 12
  13. 13

    Autoren: Jung, HS Bae, SC Kwon, HJ et al.

    Weitere Verfasser: Jung, HS Bae, SC Kwon, HJ et al.

    Quelle: Cell and Tissue Research. 341:465-470

    Schlagwörter: 0301 basic medicine, Core Binding Factor Alpha 3 Subunit/genetics, Lung/metabolism, Experimental/rehabilitation, Transforming Growth Factor beta1/genetics, Inbred C57bl, Inbred C57BL, Lung/radiation effects, Hsp70, Core Binding Factor Alpha 3 Subunit - Genetics, Radiation Injuries, Experimental - Pathology - Physiopathology - Rehabilitation, Mice, Wound Healing/physiology, Models, Transforming Growth Factor beta, Lung/physiology, Transforming Growth Factor Beta1 - Genetics - Metabolism, Experimental/pathology, Regeneration - Genetics - Physiology, Lung Injury/genetics, Lung, HSP70, Smad3 Protein - Genetics - Metabolism, Cells, Cultured, Wound Healing - Genetics - Physiology, Mice, Knockout, 0303 health sciences, Cultured, Smad3 Protein/genetics, Mouse (Runx3 Knockout), Transforming Growth Factor Beta - Genetics - Metabolism, Lung Injury, Smad3 Protein/metabolism, 3. Good health, Lung Injury/physiopathology, Lung Injury/pathology, Radiation Injuries, Experimental, Transforming Growth Factor beta1/metabolism, CCSP, PJnk, Lung Injury - Genetics - Pathology - Physiopathology - Rehabilitation, Signal Transduction - Genetics, Transforming Growth Factor beta/metabolism, Signal Transduction, PErk, Transforming Growth Factor beta/genetics, Cells, Knockout, Lung/pathology, Lung Injury/rehabilitation, Wound healing, Tgf-Β1, Models, Biological, Transforming Growth Factor beta1, 03 medical and health sciences, Organ Culture Techniques, Runx3 KO, Pjnk, Ccsp, Animals, Regeneration, Smad3 Protein, Radiation Injuries, Perk, Wound Healing, Regeneration/physiology, Lasers, Experimental - Pathology - Physiopathology - Rehabilitation, Wound Healing/genetics, Tgf-β1, Biological, Lung - Metabolism - Pathology - Physiology - Radiation Effects, Experimental/physiopathology, Mice, Inbred C57bl, Mice, Inbred C57BL, Mouse (Runx3 knockout), Core Binding Factor Alpha 3 Subunit, Runx3 Ko, Signal Transduction/genetics, Regeneration/genetics, Smad3

    Dateibeschreibung: 465~470

  14. 14

    Quelle: Rumman, M, Dhawan, J & Kassem, M 2015, ' Concise Review: Quiescence in Adult Stem Cells : Biological Significance and Relevance to Tissue Regeneration ', Stem Cells, vol. 33, no. 10, pp. 2903-2912 . https://doi.org/10.1002/stem.2056

  15. 15
  16. 16

    Weitere Verfasser: Hye Young Kang Sung Bin Cho Zhenlong Zheng et al.

    Quelle: Wound Repair and Regeneration. 22:660-665

    Dateibeschreibung: 660~665

  17. 17
  18. 18

    Quelle: Parvanian, S, Coelho-Rato, L S, Patteson, A E & Eriksson, J E 2023, 'Vimentin takes a hike - Emerging roles of extracellular vimentin in cancer and wound healing', Current Opinion in Cell Biology, vol. 85, 102246. https://doi.org/10.1016/j.ceb.2023.102246

    Relation: info:eu-repo/semantics/altIdentifier/pmid/37783033; info:eu-repo/semantics/altIdentifier/pissn/0955-0674

  19. 19

    Quelle: International journal of molecular sciences, vol. 18, no. 5, pp. 0

    Dateibeschreibung: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/pmid/28505080; info:eu-repo/semantics/altIdentifier/eissn/1422-0067; info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_CB4046B499D31; https://serval.unil.ch/notice/serval:BIB_CB4046B499D3; https://serval.unil.ch/resource/serval:BIB_CB4046B499D3.P001/REF.pdf

  20. 20

    Weitere Verfasser: Tae Im Kim Dimitri T. Azar Jin Hong Chang et al.

    Quelle: FEBS Letters. 582:3674-3680

    Dateibeschreibung: 3674~3680