Suchergebnisse - "U-Net"
-
1
Autoren: et al.
Quelle: Egyptian Informatics Journal. 32
Schlagwörter: 3D U-net segmentation, AI-augmented pre-surgical planning, Craniosynostosis reconstruction, Depth-Augmented Vision Transformers
Dateibeschreibung: electronic
-
2
Autoren:
Quelle: Wireless Brain-Connect inteRfAce TO machineS: B-CRA TOS, European Union’s Horizon 2020 Research and Innovation Program, Grant agreement ID: 965044 “BOS: Software Principles & Techniques for a Body-centric OS”, the Swedish Foundation for Strategic Research (SSF) grant FUS Photodiagnosis and Photodynamic Therapy. 54
Schlagwörter: Glaucoma, Retinal intra-ocular region, Frame networks, U-NET layers, DRISHTI-GS, DRIONS-DB, HRF
Dateibeschreibung: electronic
-
3
Autoren: et al.
Quelle: Biomedical Engineering & Physics Express. 11(3)
Schlagwörter: Algorithms, Computer Simulation, Deep Learning, Humans, Image Processing, Computer-Assisted, Monte Carlo Method, Neoplasms, Particle Accelerators, Phantoms, Imaging, Radiotherapy Dosage, Radiotherapy Planning, Radiotherapy, Intensity-Modulated, Failure analysis, Gamma rays, Hadrons, Photons, Electronic portal imaging device dosimetry, Electronic portal imaging devices, Energy fluences, Monte carlo, Monte Carlo’s simulation, Radiotherapy treatment, Simulation, Transmission dosimetry, Treatment plans, Article, cancer radiotherapy, comparative study, deep learning, feasibility study, gamma radiation, human, in vivo dosimetry, intensity modulated radiation therapy, Monte Carlo method, prediction, radiation beam, radiation dose distribution, radiation energy, radiotherapy dosage, treatment planning, U-Net architecture, volumetric modulated arc therapy, algorithm, computer simulation, image processing, imaging phantom, magnetic and electromagnetic equipment, neoplasm, procedures, radiotherapy, radiotherapy planning system, Dosimetry
Dateibeschreibung: print
-
4
Autoren: et al.
Quelle: Archive of applied mechanics (1991). 94(9):2519-2532
Schlagwörter: Attention residual U-Net architecture, Deep learning, Experimental data, Fracture, Open-access source codes and data, Soft biological tissue, Vascular tissue
Dateibeschreibung: print
-
5
Autoren: et al.
Quelle: Journal of Microscopy
Schlagwörter: 40 Engineering (for-2020), 4016 Materials Engineering (for-2020), Bioengineering (rcdc), deep learning, FFT, GUI tool, solid electrolyte interphase, transmission electron microscopy, U-Net, FFT, GUI tool, U‐Net, deep learning, solid electrolyte interphase, transmission electron microscopy, 0204 Condensed Matter Physics (for), 0601 Biochemistry and Cell Biology (for), 0912 Materials Engineering (for), Microscopy (science-metrix), 3101 Biochemistry and cell biology (for-2020), 3406 Physical chemistry (for-2020), 4016 Materials engineering (for-2020)
Dateibeschreibung: application/pdf
-
6
Autoren: et al.
Quelle: Alexandria Engineering Journal, Vol 128, Iss, Pp 878-890 (2025)
-
7
Autoren: et al.
Quelle: Journal of Shoulder and Elbow Surgery. 34:2224-2238
Schlagwörter: Artificial intelligence, Basic Science Study, fatty infiltration, muscle volume, Computer Modeling Using AI/Machine Learning, convolutional neural network, rotator cuff, U-Net, Imaging, MRI
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/39921123
https://research.vu.nl/en/publications/8a6cecd6-7f1d-411b-8333-f3e5a60f7f1e
https://doi.org/10.1016/j.jse.2024.12.033
https://hdl.handle.net /1871.1/8a6cecd6-7f1d-411b-8333-f3e5a60f7f1e -
8
Autoren:
Quelle: Alexandria Engineering Journal, Vol 128, Iss, Pp 100-116 (2025)
-
9
Autoren:
Quelle: Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi; Vol. 10 No. 2 (2025): In Press: July, 2025; 110-120
Schlagwörter: Blur severity classification, Image deblurring, Convolutional Neural Network, U-Net
Dateibeschreibung: application/pdf
-
10
Autoren: et al.
Quelle: Dipòsit Digital de Documents de la UAB
Universitat Autònoma de BarcelonaSchlagwörter: Remote monitoring, Spill detection, Laboratory safety, Wireless sensing, Deep learning, Artificial intelligence (AI), U-Net, Frequency-selective surface (FSS)
Dateibeschreibung: application/pdf
Zugangs-URL: https://ddd.uab.cat/record/311285
-
11
Autoren: et al.
Quelle: Alexandria Engineering Journal, Vol 126, Iss, Pp 220-230 (2025)
-
12
Autoren:
Quelle: Volume: 9, Issue: 173-91
International Journal of 3D Printing Technologies and Digital IndustrySchlagwörter: Deep Learning, Image Processing, 3D Image Segmentation, Medical Image Analysis, U-Net, UNETR, Swin-Unet, Yazılım Mühendisliği (Diğer), Software Engineering (Other), 3D U-Net, SwinUNETR
Dateibeschreibung: application/pdf
-
13
Autoren: Melinščak, Martina
Quelle: 2025 MIPRO 48th ICT and Electronics Convention. :1245-1250
Schlagwörter: retinal OCT, AROI dataset, interpretability, attention mechanism, U-Net, Grad-CAM
-
14
[PSI]-CIC: A Deep-Learning Pipeline for the Annotation of Sectored Saccharomyces cerevisiae Colonies
Autoren: et al.
Quelle: Bulletin of Mathematical Biology. 87(1)
Schlagwörter: 31 Biological Sciences (for-2020), 3102 Bioinformatics and Computational Biology (for-2020), Rare Diseases (rcdc), Neurodegenerative (rcdc), Genetics (rcdc), Transmissible Spongiform Encephalopathy (TSE) (rcdc), Neurosciences (rcdc), Brain Disorders (rcdc), Saccharomyces cerevisiae (mesh), Deep Learning (mesh), Prions (mesh), Phenotype (mesh), Mathematical Concepts (mesh), Neural Networks, Computer (mesh), Saccharomyces cerevisiae Proteins (mesh), Models, Biological (mesh), Computational Biology (mesh), Image Processing, Computer-Assisted (mesh), Peptide Termination Factors (mesh), U-Net, Image segmentation, Deep learning, Classification, Yeast, Prions, Saccharomyces cerevisiae (mesh), Saccharomyces cerevisiae Proteins (mesh), Prions (mesh), Peptide Termination Factors (mesh), Computational Biology (mesh), Phenotype (mesh), Models, Biological (mesh), Image Processing, Computer-Assisted (mesh), Mathematical Concepts (mesh), Deep Learning (mesh), Neural Networks, Computer (mesh), Classification, Deep learning, Image segmentation, Prions, U-Net, Yeast, Saccharomyces cerevisiae (mesh), Deep Learning (mesh), Prions (mesh), Phenotype (mesh), Mathematical Concepts (mesh), Neural Networks, Computer (mesh), Saccharomyces cerevisiae Proteins (mesh), Models, Biological (mesh), Computational Biology (mesh), Image Processing, Computer-Assisted (mesh), Peptide Termination Factors (mesh), 01 Mathematical Sciences (for), 06 Biological Sciences (for), Bioinformatics (science-metrix), 31 Biological sciences (for-2020), 49 Mathematical sciences (for-2020)
Dateibeschreibung: application/pdf
-
15
Autoren:
Quelle: ISPRS journal of photogrammetry and remote sensing (Print). 203:301-313
Schlagwörter: Burned area, Deep learning, SAR, Segmentation, Sentinel-1, Total variation, U-Net, Wildfire
Dateibeschreibung: print
-
16
Autoren:
Quelle: Volume: 7, Issue: 126-44
ArtGRID-Journal of Architecture Engineering and Fine ArtsSchlagwörter: Artificial Intelligence (Other), Forest Management, Remote Sensing, Deep Learning, Istanbul, U-Net, Fotogrametri ve Uzaktan Algılama, Modelling and Simulation, Yapay Zeka (Diğer), Photogrammetry and Remote Sensing, Modelleme ve Simülasyon, Orman Amenajmanı, Uzaktan Algılama, Derin Öğrenme, İstanbul
Dateibeschreibung: application/pdf
-
17
Autoren:
Quelle: Zanco Journal of Pure and Applied Sciences, Vol 37, Iss 3 (2025)
-
18
Autoren: et al.
Quelle: Volume: 5, Issue: 112-22
Computers and InformaticsSchlagwörter: Artificial Intelligence (Other), Görüntü İşleme, Image Processing, Yapay Zeka (Diğer), Breast cancer, Deep learning, Histology, ResNet, U-Net
Dateibeschreibung: application/pdf
-
19
Autoren:
Quelle: Wasit Journal for Pure Sciences, Vol 4, Iss 2 (2025)
Schlagwörter: Image segmentation, Transformer encoder, Science, U-Net
-
20
Autoren:
Quelle: Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, Vol 15, Iss 2 (2025)
Full Text Finder
Nájsť tento článok vo Web of Science