Suchergebnisse - "Simulaciones de dinámica molecular"
-
1
Autoren: Lopez Coll, Ricard
Weitere Verfasser: University/Department: Universitat de Girona. Departament de Química, University/Department: Universitat de Girona. Institut de Química Computacional i Catàlisi
Thesis Advisors: Lledó Ponsati, Agustí, Roglans i Ribas, Anna
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: Química orgànica, Química orgánica, Organic chemistry, Química supramolecular, Supramolecular chemistry, Receptors artificials, Receptores artificiales, Artificial receptors, Cavitands funcionals, Cavitandos funcionales, Functional cavitands, Disseny racional, Diseño racional, Rational design, Catàlisi bioinspirada, Catálisis bioinspirada, Bioinspired catalysis, Simulacions de dinàmica molecular, Simulaciones de dinámica molecular, Molecular dynamics (MD) simulations
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/10803/695484
-
2
Autoren: Morales Pastor, Adrián
Weitere Verfasser: University/Department: Universitat Pompeu Fabra. Departament de Medicina i Ciències de la Vida
Thesis Advisors: Selent, Jana
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: G protein-coupled receptor, Allosteric communication, Molecular dynamics simulations, Machine learning, Graph theory, Receptores acoplados a proteina G, Comunicación alostérica, Simulaciones de dinámica molecular, Aprendizaje automático, Teoría de grafos
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/10803/690637
-
3
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Ácidos húmicos, Modelos computacionales, Acción antiviral, Carbón, Licenciatura en Química -- Tesis y disertaciones académicas, Actividad bactericida de ácidos húmicos, Simulaciones de dinámica molecular, Aplicaciones medicinales del carbón, Humic acids, Computacional models, Antiviral action, Coal
Dateibeschreibung: pdf; application/pdf
Relation: https://hdl.handle.net/11349/42557
Verfügbarkeit: https://hdl.handle.net/11349/42557
-
4
Autoren: et al.
Schlagwörter: Nanopartículas de magnetita, Magnetoliposomas, Simulaciones de dinámica molecular, Proteína OmpA, Enfermedad de Parkinson, Magnetite nanoparticles, Magnetoliposomes, Molecular dynamics simulations, OmpA protein, Parkinson’s disease
Dateibeschreibung: application/pdf
Relation: Frontiers in Bioengineering and Biotechnology, 2296-4185, 11, 2023, 1181842; https://www.frontiersin.org/articles/10.3389/fbioe.2023.1181842/full; https://hdl.handle.net/20.500.12495/10794; https://doi.org/10.3389/fbioe.2023.1181842; instname:Universidad El Bosque; reponame:Repositorio Institucional Universidad El Bosque; repourl:https://repositorio.unbosque.edu.co
-
5
Autoren: et al.
Quelle: UVaDOC. Repositorio Documental de la Universidad de Valladolid
Universidad de Valladolid
instnameSchlagwörter: Molecular dynamics simulations, 0103 physical sciences, Simulaciones de dinámica molecular, 01 natural sciences
Dateibeschreibung: application/pdf
Zugangs-URL: https://uvadoc.uva.es/bitstream/10324/33903/1/2018_Martin_CDE2018.pdf
https://www.ele.uva.es/~mmm/publications/modeling-sige-through-classical-molecular -dynamics-simulations-chasing-an-appropriate-empirical-potential.html
https://www.ele.uva.es/~mmm/papers/2018_Martin_CDE2018.pdf
https://uvadoc.uva.es/handle/10324/33903
https://uvadoc.uva.es/bitstream/10324/33903/1/2018_Martin_CDE2018.pdf -
6
Autoren: et al.
Quelle: UVaDOC. Repositorio Documental de la Universidad de Valladolid
Universidad de Valladolid
instnameSchlagwörter: Molecular dynamics simulations, 0103 physical sciences, Amorphous silicon, Silicio amorfo, Simulaciones de dinámica molecular, 01 natural sciences
Dateibeschreibung: application/pdf
Zugangs-URL: https://uvadoc.uva.es/bitstream/10324/32400/1/2018_Santos_JNCS.pdf
https://www.sciencedirect.com/science/article/pii/S0022309318305519
http://ui.adsabs.harvard.edu/abs/2019JNCS..503...20S/abstract
https://www.ele.uva.es/~mmm/publications/generation-of-amorphous-si-structurally-compatible-with-experimental-samples-through-the-quenching-process-a-systematic-molecular -dynamics-simulation-study.html
https://uvadoc.uva.es/bitstream/10324/32400/1/2018_Santos_JNCS.pdf
https://www.ele.uva.es/~mmm/papers/2019_Santos_JNCS.pdf
https://uvadoc.uva.es/handle/10324/32400 -
7
Autoren:
Schlagwörter: Biotecnología, Ingeniería metabólica, Proteínas de transporte de Membrana, Simulaciones de dinámica molecular
Dateibeschreibung: 132 páginas; application/pdf
Relation: Voll, L. M., Nikoloski, Z., eds. (2016). Engineering Synthetic Metabolons: From Metabolic Modelling to Rational Design of Biosynthetic Devices. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-921-1 Frontiers; http://hdl.handle.net/20.500.12010/14406
-
8
Autoren: et al.
Weitere Verfasser: et al.
Quelle: UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)Schlagwörter: Hidrofluorocarbonos, Artificial neural networks, Molecular dynamics simulations, Gas separation, Hydrofluorocarbons, Hydrofluoroolefins, Fluorinated gases, Ionic liquids, Modelado termodinámico, Redes neuronales artificiales, Absorption processes, Hidrofluoroolefinas, Separación de gases, Refrigeration cycles, Simulaciones de dinámica molecular, Ciclos de refrigeración, Thermodynamic modeling, Gases fluorados, Líquidos iónicos, Procesos de absorción
Zugangs-URL: https://hdl.handle.net/10902/28794
-
9
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Hidrofluorocarbonos, Hidrofluoroolefinas, Gases fluorados, Líquidos iónicos, Modelado termodinámico, Redes neuronales artificiales, Simulaciones de dinámica molecular, Procesos de absorción, Separación de gases, Ciclos de refrigeración, Hydrofluorocarbons, Hydrofluoroolefins, Fluorinated gases, Ionic liquids, Thermodynamic modeling, Artificial neural networks, Molecular dynamics simulations, Absorption processes, Gas separation, Refrigeration cycles
Relation: https://hdl.handle.net/10902/28794
Verfügbarkeit: https://hdl.handle.net/10902/28794
-
10
Autoren: Martín López, Eva
Schlagwörter: Treball de fi de grau – Curs 2022-2023, Simulacions de dinàmica molecular (MD), Complexos proteïna-ligand, Preparació automatitzada del sistema, Posició d’unió, Metadinàmica, Simulaciones de dinámica molecular (MD), Complejos proteínaligando, Preparación automatizada del sistema, Posición de unión, Metadinámica, Molecular Dynamics (MD) simulations, Protein-ligand complexes, Automated system preparation, Binding pose, Metadynamics
Dateibeschreibung: application/pdf
Relation: http://hdl.handle.net/10230/59918
Verfügbarkeit: http://hdl.handle.net/10230/59918
-
11
Autoren: Cepeda Espín, Juan José
Schlagwörter: FÍSICA, COMPLEJOS BIOMOLECULARES, APTÁMEROS DE ARN, DISOCIACIÓN FORZADA, SIMULACIONES DE DINÁMICA MOLECULAR, POTENCIA DE FUERZA MEDIA
Relation: Cepeda Espín, J.J. (2023). Potencial de Fuerza Media Asociado a la Interacción entre la Proteína Ribosómica S8 y su Aptámero de ARN. 91 páginas. Quito : EPN.; http://bibdigital.epn.edu.ec/handle/15000/24508
Verfügbarkeit: http://bibdigital.epn.edu.ec/handle/15000/24508
-
12
Autoren:
Schlagwörter: Ingeniería general y civil, Modelado multiescala y jerárquico, Simulaciones de dinámica molecular, Propiedades electrónicas y ópticas de los sólidos, Macromolecular complex, Materials growth
Dateibeschreibung: 93 páginas; application/pdf
Relation: Taioli, S., Dapor, M., Pugno, N. M., eds. (2016). New Frontiers in Multiscale Modelling of Advanced Materials. Lausanne: Frontiers Media. doi:10.3389/978-2-88919-755-2; http://hdl.handle.net/20.500.12010/14445
-
13
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: 540 - Química y ciencias afines, Pseudomonas aeruginosa, Farmacología, Preparaciones Farmacéuticas, Pharmaceutical Preparations, Pharmacology, Pharmaceutical technology, Tecnología farmacéutica, Quorum sensing, P. aeruginosa, LasR / PqsR / RhlR, Computer-aided drug design, Protein-ligand interaction fingerprints, Transcriptional factors, Cheminformatics, Molecular dynamics simulation, Machine learning, Factores de transcripción, Quimioinformatica, Simulaciones de dinámica molecular, Diseño de fármacos asistido por computadora, Aprendizaje de maquina
Dateibeschreibung: xxii, 147 páginas; application/pdf
Relation: Schopf, J. W. Fossil evidence of Archaean life. Philos. Trans. R. Soc. B Biol. Sci. 361, 869–885 (2006).; Altermann, W. & Kazmierczak, J. Archean microfossils: A reappraisal of early life on Earth. Res. Microbiol. 154, 611–617 (2003).; Koch, R. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus Anthracis. Dtsch. Medizinische Wochenschrift 8, 283 (1882).; Fredricks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).; Andrei, S., Valeanu, L., Chirvasuta, R. & Stefan, M.-G. New FDA approved antibacterial drugs: 2015-2017. FDA Approv. Antibact. Drugs 2015–2017.; Aminov, R. I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 1, (2010).; Ventola, C. L. [Review] The antibiotic resistance crisis: part 1: causes and threats. Pharm. Ther. 40, 277–83 (2015).; Peña, C. et al. Carbapenem-resistant Pseudomonas aeruginosa: Factors influencing multidrug-resistant acquisition in non-critically ill patients. Eur. J. Clin. Microbiol. Infect. Dis. 28, 519–522 (2009).; El Zowalaty, M. E. et al. Pseudomonas aeruginosa: Arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Fut. Microbiol. vol. 10 1683–1706 (2015).; Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).; Drugs Development & Approval Process. Novel Drug Approvals for 2017. U.S. Food Drug Adm. 1–36 (2017).; Drugs Development & Approval Process. Novel Drug Approvals for 2018. U.S. Food Drug Adm. 1–36 (2018).; Drugs Development & Approval Process. Through Innovation New Drug Therapy Approvals 2019. U.S. Food Drug Adm. 1–44 (2020).; Mullard, A. 2019 FDA drug approvals. Nat. Rev. Drug Discov. 19, 79–84 (2020).; Nealson, K. H., Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313–22 (1970).; Kalia, V. C. Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. (Springer India, 2015).; Pérez-Pérez, M., Jorge, P., Pérez Rodríguez, G., Pereira, M. O. & Lourenço, A. Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: new insights through network mining. Biofouling 33, 128–142 (2017).; Pesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179, 3127–32 (1997).; Dubern, J. F. & Diggle, S. P. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol. Biosyst. 4, 882–888 (2008).; Lee, J. et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 9, 339–343 (2013).; Schuster, M. & Peter Greenberg, E. A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73–81 (2006).; Lagarde, N., Zagury, J. F. & Montes, M. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling vol. 55 1297–1307 (2015).; Sliwoski, G. R., Meiler, J. & Lowe, E. W. Computational Methods in Drug Discovery Prediction of protein structure and ensembles from limited experimental data View project Antibody modeling, Antibody design and Antigen-Antibody interactions View project. Comput. Methods Drug Discov. 66, 334–95 (2014).; Macalino, S. J. Y., Gosu, V., Hong, S. & Choi, S. Role of computer-aided drug design in modern drug discovery. Arc. of Pharmacal. Res. vol. 38 1686–1701 (2015).; Bajorath, J. Computer-aided drug discovery [ version 1; referees : 3 approved ] Referee Status : 4, 1–8 (2016).; Jorgensen, W. L. The Many Roles of Computation in Drug Discovery. Science vol. 303 1813–1818 (2004).; Aguayo-Ortiz, R. & Fernández-de Gortari, E. Overview of Computer-Aided Drug Design for Epigenetic Targets. in Epi-Informatics 21–52 (Academic Press, 2016).; Brown, N. et al. Big Data in Drug Discovery. in Progress in Medicinal Chemistry vol. 57 277–356 (Elsevier B.V., 2018).; Polanski, J. Big Data in Structure-Property Studies—From Definitions to Models. in 529–552 (2017).; Mendez, D. et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).; Kim, S. et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 47, D1102–D1109 (2019).; Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).; Gutmanas, A. et al. PDBe: Protein data bank in Europe. Nucleic Acids Res. 42, (2014).; Treepong, P. et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266 (2018).; Gellatly, S. L. & Hancock, R. E. W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173 (2013).; Moradali, M. F., Ghods, S. & Rehm, B. H. A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 7, (2017).; Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L. & Schomburg, D. How Pseudomonas aeruginosa adapts to various environments: A metabolomic approach. Environ. Microbiol. 12, 1734–1747 (2010).; Migiyama, Y. et al. Pseudomonas aeruginosa bacteremia among immunocompetent and immunocompromised patients: Relation to initialantibiotic therapy and survival. Jpn. J. Infect. Dis. 69, 91–96 (2016).; Hauser, A. R. So Many Virulence Factors, So Little Time. Crit Care Med. 39, 2193–2194 (2012).; Olusegun, A. et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech i, 38 (2012).; Tacconelli, E., Carrara, E., Savoldi, A., Kattula, D. & Burkert, F. GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS. http://www.cdc.gov/drugresistance/threat-report-2013/.; Centers for Disease Control and Prevention. Multi-drug resistant Pseudomonas aeruginosa infection. (2017).; Suetens, C. et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two european point prevalence surveys, 2016 to 2017. Eurosurveillance 23, 1–18 (2018).; Restrepo, M. I. et al. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: A multinational point prevalence study of hospitalised patients. Eur. Respir. J. 52, (2018).; Instituto Nacional de Salud. Boletín epidemiológico semanal 07 de 2020. Boletín epidemiológico semanal (2020).; Tamber, S. & Hancock, R. E. W. Frontiers in Bioscience 8, s472-483, May 1, 2003] ON THE MECHANISM OF SOLUTE UPTAKE IN PSEUDOMONAS. 472–483 (2003).; Baumgart, A. M. K., Molinari, M. A. & de Silveira, A. C. O. Prevalence of carbapenem resistant pseudomonas aeruginosa and acinetobacter baumannii in high complexity hospital. Brazilian J. Infect. Dis. 14, 433–436 (2010).; Colclough, A. L. et al. RND efflux pumps in Gram-negative bacteria; Regulation, structure and role in antibiotic resistance. Future Microbiol. 15, 143–157 (2020).; Oliver, A., Mulet, X., López-Causapé, C. & Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat. 21–22, 41–59 (2015).; Poole, K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20, 227–234 (2012).; Fernández, L., Breidenstein, E. B. M. & Hancock, R. E. W. Creeping baselines and adaptive resistance to antibiotics. Drug Resist. Updat. 14, 1–21 (2011).; Fraud, S., Campigotto, A. J., Chen, Z. & Poole, K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: Involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob. Agents Chemother. 52, 4478–4482 (2008).; Lee, J. Y., Park, Y. K., Chung, E. S., Na, I. Y. & Ko, K. S. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci. Rep. 6, 1–13 (2016).; Fujitani, S., Moffett, K. & Yu, V. Pseudomonas aeruginosa. Infect. Dis. Antimicrob. agents (2018).; Instituto Nacional de Vigilancia de Medicamentos y Alimentos INVIMA. NORMAS FARMACOLÓGICAS. (2020).; Bassetti, M., Vena, A., Croxatto, A., Righi, E. & Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 7, 1–18 (2018).; Public Health England. Antibiotic Awareness: Key Messages 2017 World Antibiotic Awareness Week European Antibiotic Awareness Day Antibiotic Guardian. www.facebook.com/PublicHealthEngland (2017).; Theuretzbacher, U. Antibiotic innovation for future public health needs. Clin. Microbiol. Infect. 23, 713–717 (2017).; Holden, M. T., Diggle, S. P. & Williams, P. Quorum Sensing. in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd, 2007).; Miller, M. B. & Bassler, B. L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).; Bai Aswathanarayan, J. & Ravishankar Rai, V. Quorum-Sensing Systems in Pseudomonas. (2015).; O’Reilly, M. C. & Blackwell, H. E. Structure-Based Design and Biological Evaluation of Triphenyl Scaffold-Based Hybrid Compounds as Hydrolytically Stable Modulators of a LuxR-Type Quorum Sensing Receptor. ACS Infect. Dis. 2, 32–38 (2016).; Huang, H. et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat. Commun. 10, (2019).; Lee, J. & Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6, 26–41 (2015).; Garcïa-Contreras, R. Is quorum sensing interference a viable alternative to treat Pseudomonas aeruginosa infections? Front. Microbiol. 7, 1–7 (2016).; Barr, H. L. et al. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur. Respir. J. 46, 1046–1054 (2015).; Taha, M. N., Saafan, A. E., Ahmedy, A., El Gebaly, E. & Khairalla, A. S. Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1. J. Microbiol. 57, 618–625 (2019).; Abinaya, M. & Gayathri, M. Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3, 5, 7-Trihydroxyflavone from Alstonia scholaris leaf against P.aeruginosa. Bioorg. Chem. 87, 291–301 (2019).; Ćirić, A. D. et al. Natural products as biofilm formation antagonists and regulators of quorum sensing functions: A comprehensive review update and future trends. South African Journal of Botany vol. 120 65–80 (2019).; Soukarieh, F. et al. In silico and in vitro-guided identification of inhibitors of alkylquinolone-dependent quorum sensing in pseudomonas aeruginosa. Molecules 23, (2018).; Schütz, C. & Empting, M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein Journal of Organic Chemistry vol. 14 2627–2645 (2018).; Sampathkumar, S. J., Srivastava, P., Ramachandran, S., Sivashanmugam, K. & Gothandam, K. M. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb. Pathog. 135, 103658 (2019).; Reina, J. C., Pérez-Victoria, I., Martín, J. & Llamas, I. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar. Drugs 17, 494 (2019).; Teerapo, K., Roytrakul, S., Sistayanarain, A. & Kunthalert, D. A scorpion venom peptide derivative BmKn-22 with potent antibiofilm activity against Pseudomonas aeruginosa. PLoS One 14, (2019).; Gómez-Gómez, B. et al. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: Violacein production and bacterial biofilm formation. Metallomics 11, 1104–1114 (2019).; Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, 1–25 (2012).; Soheili, V., Tajani, A. S., Ghodsi, R. & Bazzaz, B. S. F. Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. Eur. J. Med. Chem. 172, 26–35 (2019).; Maura, D., Hazan, R., Kitao, T., Ballok, A. E. & Rahme, L. G. Evidence for direct control of virulence and defense gene circuits by the pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci. Rep. 6, 1–14 (2016).; Starkey, M. et al. Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity. PLoS Pathog. 10, (2014).; Wang, J. et al. Bacterial quorum-sensing signal IQS induces host cell apoptosis by targeting POT1-p53 signalling pathway. Cell. Microbiol. 21, e13076 (2019).; López Vallejo, F., Medina Franco, J. L. & Castillo, R. Diseño de fármacos asistido por computadora. Educ. Química 17, 452 (2006).; Saldívar-González, F., Prieto-Martínez, F. D. & Medina-Franco, J. L. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educ. Quim. 28, 51–58 (2017).; PROTEIN DATA BANK. PDB Statistics: PDB Data Distribution by Residue Count. https://www.rcsb.org/stats/distribution-residue-count (2020).; Meza Menchaca, T., Juárez-Portilla, C. & C. Zepeda, R. Past, Present, and Future of Molecular Docking. in Drug Discovery and Development - New Advances (IntechOpen, 2020).; Berry, M., Fielding, B. & Gamieldien, J. Practical Considerations in Virtual Screening and Molecular Docking. Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology: Algorithms and Software Tools (Elsevier Inc., 2015).; Prieto-Martínez, F. D., Arciniega, M. & Medina-Franco, J. L. Acoplamiento Molecular: Avances Recientes y Retos. TIP Rev. Espec. en Ciencias Químico-Biológicas 21, 65–87 (2018).; Hollingsworth, S. A. & Dror, R. O. Molecular Dynamics Simulation for All. Neuron 99, 1129–1143 (2018).; Azhagiya Singam, E. R., Tachachartvanich, P., La Merrill, M. A., Smith, M. T. & Durkin, K. A. Structural Dynamics of Agonist and Antagonist Binding to the Androgen Receptor. J. Phys. Chem. B 123, 7657–7666 (2019).; An, X. et al. How Does Agonist and Antagonist Binding Lead to Different Conformational Ensemble Equilibria of the κ-Opioid Receptor: Insight from Long-Time Gaussian Accelerated Molecular Dynamics Simulation. ACS Chem. Neurosci. 10, 1575–1584 (2019).; Wang, Y. T. & Chan, Y. H. Understanding the molecular basis of agonist/antagonist mechanism of human mu opioid receptor through gaussian accelerated molecular dynamics method. Sci. Rep. 7, 1–11 (2017).; Kolinski, M. & Filipek, S. Molecular Dynamics of μ Opioid Receptor Complexes with Agonists and Antagonists. Open Struct. Biol. J. 2, 8–20 (2008).; Wiltgen, M. & Tilz, G. P. Homology modelling: Eine übersicht über die methode am beispiel der strukturbestimmung vom diabetes antigen GAD 65. Wiener Medizinische Wochenschrift 159, 112–125 (2009).; Muhammed, M. T. & Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des. 93, 12–20 (2019).; Rodriguez, R., Chinea, G., Lopez, N., Pons, T. & Vriend, G. Homology modeling, model and software evaluation: Three related resources. Bioinformatics 14, 523–528 (1998).; Croll, T. I., Sammito, M. D., Kryshtafovych, A. & Read, R. J. Evaluation of template-based modeling in CASP13. Proteins Struct. Funct. Bioinforma. 87, 1113–1127 (2019).; Senior, A. W. et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins Struct. Funct. Bioinforma. 87, 1141–1148 (2019).; Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, 198–201 (2007).; Todeschini, R. & Consonni, V. Handbook of Molecular Descriptors. (John Wiley & Sons, 2008).; Sastry, M., Lowrie, J. F., Dixon, S. L. & Sherman, W. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model. 50, 771–784 (2010).; Bajusz, D., Rácz, A. & Héberger, K. Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. in Comprehensive Medicinal Chemistry III (2017).; Ruddigkeit, L., Van Deursen, R., Blum, L. C. & Reymond, J. L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012).; Choudhury, C. & Narahari Sastry, G. Pharmacophore Modelling and Screening: Concepts, Recent Developments and Applications in Rational Drug Design. Challenges Adv. Comput. Chem. Phys. 27, 25–53 (2019).; Qing, X. et al. Pharmacophore modeling: Advances, Limitations, And current utility in drug discovery. Journal of Receptor, Ligand and Channel Research vol. 7 81–92 (2014).; Liu, C. et al. Pharmacophore-Based Virtual Screening Toward the Discovery of Novel Anti-echinococcal Compounds. Front. Cell. Infect. Microbiol. 10, 1–12 (2020).; Alpaydin, E. Machine Learning: The New AI. (The MIT Press, 2016).; Mayr, A. et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9, 5441–5451 (2018).; Naveja, J. J. & Medina-Franco, J. L. Finding Constellations in Chemical Space Through Core Analysis. Front. Chem. 7, 1–10 (2019).; RDKit: Open-source cheminformatics. http://www.rdkit.org (2013).; MolVS: Molecule Validation and Standardization. https://molvs.readthedocs.io/en/latest/index.html (2016).; Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).; Lovering, F. Escape from Flatland 2: Complexity and promiscuity. Medchemcomm 4, 515–519 (2013).; Clemons, P. A. et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl. Acad. Sci. U. S. A. 107, 18787–18792 (2010).; Méndez-Lucio, O. & Medina-Franco, J. L. The many roles of molecular complexity in drug discovery. Drug Discovery Today (2017).; Bertz H., S. The First General Index of Molecular Complexity. J. Am. Chem. Soc. 103, 3599–3601 (1981).; Sander, T., Freyss, J., Von Korff, M. & Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55, 460–473 (2015).; McKinney, W. Data Structures for Statistical Computing in Python. PROC. 9th PYTHON Sci. CONF. (SCIPY 2010) 51–56 (2010).; Hu, Y., Stumpfe, D. & Bajorath, J. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry. Journal of Medicinal Chemistry (2016).; Stumpfe, D., Dimova, D. & Bajorath, J. Computational method for the systematic identification of analog series and key compounds representing series and their biological activity profiles. J. Med. Chem. 59, 7667–7676 (2016).; Zdrazil, B. & Guha, R. The Rise and Fall of a Scaffold: A Trend Analysis of Scaffolds in the Medicinal Chemistry Literature. J. Med. Chem. 61, 4688–4703 (2018).; Saldívar-González, F. I., Naveja, J. J., Palomino-Hernández, O. & Medina-Franco, J. L. Getting SMARt in drug discovery: Chemoinformatics approaches for mining structure-multiple activity relationships. RSC Advances vol. 7 632–641 (2017).; Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).; Golbamaki, A., Franchi, A. M. & Gini, G. The Maximum Common Substructure (MCS) Search as a New Tool for SAR and QSAR. in Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics 149–165 (2017).; Xu, Y. J. & Johnson, M. Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J. Chem. Inf. Comput. Sci. 42, 912–926 (2002).; Maggiora, G. M. On outliers and activity cliffs - Why QSAR often disappoints. Journal of Chemical Information and Modeling vol. 46 1535 (2006).; Cruz-Monteagudo, M. et al. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov. Today 19, 1069–1080 (2014).; Hu, Y. & Bajorath, J. Activity profile relationships between structurally similar promiscuous compounds. Eur. J. Med. Chem. 69, 393–398 (2013).; Medina-Franco, J. L. Activity cliffs: Facts or artifacts? Chem. Biol. Drug Des. 81, 553–556 (2013).; Medina-Franco, J. L. et al. Characterization of activity landscapes using 2D and 3D similarity methods: Consensus activity cliffs. J. Chem. Inf. Model. (2009).; Sud, M. MayaChemTools: An Open Source Package for Computational Drug Discovery. J. Chem. Inf. Model. 56, 2292–2297 (2016).; Saldívar-González, F. I., Lenci, E., Trabocchi, A. & Medina-Franco, J. L. Exploring the chemical space and the bioactivity profile of lactams: a chemoinformatic study. RSC Adv. 9, 27105–27116 (2019).; Firdaus Begam, B., Begam, B. F. & Kumar, J. S. Visualization of Chemical Space Using Principal Component Analysis. World Appl. Sci. J. 29, 53–59 (2014).; Karlov, D. S., Sosnin, S., Tetko, I. V. & Fedorov, M. V. Chemical space exploration guided by deep neural networks. RSC Adv. 9, 5151–5157 (2019).; De La Vega De León, A. & Bajorath, J. Chemical space visualization: Transforming multidimensional chemical spaces into similarity-based molecular networks. Future Med. Chem. 8, (2016).; Pettersen, E. F. et al. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).; Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).; Wu, S., Skolnick, J. & Zhang, Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 5, 1–10 (2007).; Ovchinnikov, S., Park, H., Kim, D. E., DiMaio, F. & Baker, D. Protein structure prediction using Rosetta in CASP12. Proteins Struct. Funct. Bioinforma. 86, 113–121 (2018).; Meier, A. & Söding, J. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling. PLoS Comput. Biol. 11, (2015).; Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis Lawrence. Nat. Protoc. 10, 845–858 (2016).; Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).; Shapovalov, M. V. & Dunbrack Jr., R. L. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions Maxim. 19, 844–858 (2012).; Gasteiger, J. & Marsili, M. A new model for calculating atomic charges in molecules. Tetrahedron Lett. 19, 3181–3184 (1978).; Halgren, T. a. Merck Molecular Force Field. J. Comput. Chem. 17, 490–519 (1996).; Trott, O. & Olson, A. J. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).; Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F. & Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43, W443–W447 (2015).; Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).; Bergdorf, M. et al. Desmond / GPU Performance as of November 2016. 2015, 1–11 (2016).; Humphrey, W., Dalke, A. & Schulten, K. VMD -- Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).; Gowers, R. et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proc. 15th Python Sci. Conf. 98–105 (2016).; Seyler, S. L., Kumar, A., Thorpe, M. F. & Beckstein, O. Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways. PLoS Comput. Biol. 11, 1–36 (2015).; Chemical Computing Group ULC. Molecular Operating Environment (MOE). (2020).; Ali, M. PyCaret: An open source, low-code machine learning library in Python. (2020).; O’Reilly, M. C. et al. Structural and Biochemical Studies of Non-native Agonists of the LasR Quorum-Sensing Receptor Reveal an L3 Loop “Out” Conformation for LasR. Cell Chem. Biol. 25, 1128-1139.e3 (2018).; Wermuth, C. G. The Practice of Medicinal Chemistry, 3rd Ed. 982 (2011).; Hao, M., Bryant, S. H. & Wang, Y. Cheminformatics analysis of the AR agonist and antagonist datasets in PubChem. J. Cheminform. 8, 37 (2016).; Boursier, M. E., Combs, J. B. & Blackwell, H. E. N -Acyl l -Homocysteine Thiolactones Are Potent and Stable Synthetic Modulators of the RhlR Quorum Sensing Receptor in Pseudomonas aeruginosa. ACS Chem. Biol. 14, 186–191 (2019).; Eibergen, N. R., Moore, J. D., Mattmann, M. E. & Blackwell, H. E. Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Non-native Ligands: An Emerging Target for Virulence Control in Pseudomonas aeruginosa. Chembiochem 16, 2348–56 (2015).; Ahumedo Monterrosa, M., Galindo, J. F., Vergara Lorduy, J., Alí-Torres, J. & Vivas-Reyes, R. The role of LasR active site amino acids in the interaction with the Acyl Homoserine Lactones (AHLs) analogues: A computational study. J. Mol. Graph. Model. 86, 113–124 (2019).; Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).; Cavasotto, C. N. & Phatak, S. S. Homology modeling in drug discovery: current trends and applications. Drug Discovery Today vol. 14 676–683 (2009).; Kim, T. et al. Structural insights into the molecular mechanism of Escherichia coli SdiA, a quorum-sensing receptor. Acta Crystallogr. Sect. D Biol. Crystallogr. 70, 694–707 (2014).; Nguyen, Y. et al. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. MBio 6, 1–10 (2015).; Lintz, M. J., Oinuma, K. I., Wysoczynski, C. L., Greenberg, E. P. & Churchill, M. E. A. Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc. Natl. Acad. Sci. U. S. A. 108, 15763–15768 (2011).; Paczkowski, J. E. et al. An Autoinducer Analogue Reveals an Alternative Mode of Ligand Binding for the LasR Quorum-Sensing Receptor. ACS Chem. Biol. 14, 378–389 (2019).; Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).; Studer, G. et al. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 36, 1765–1771 (2020).; Wallner, B. & Elofsson, A. Can correct protein models be identified? Protein Sci. 12, 1073–1086 (2003).; Chowdhury, N. & Bagchi, A. Identification of ligand binding activity and DNA recognition by RhlR protein from opportunistic pathogen Pseudomonas aeruginosa—a molecular dynamic simulation approach. J. Mol. Recognit. 31, 1–7 (2018).; Kim, H. et al. Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches. Biotechnol. Bioprocess Eng. 25, 895–930 (2020).; Yang, M. et al. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors. J. Chem. Inf. Model. 59, 5002–5012 (2019).; Fernández, A. et al. Learning from Imbalanced Data Sets. Learning from Imbalanced Data Sets (Springer International Publishing, 2018).; Chawla, N. V. Data Mining for Imbalanced Datasets: An Overview. in Data Mining and Knowledge Discovery Handbook 853–867 (Springer-Verlag, 2006).; Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).; Ji, X., Tong, W., Liu, Z. & Shi, T. Five-Feature Model for Developing the Classifier for Synergistic vs. Antagonistic Drug Combinations Built by XGBoost. Front. Genet. 10, 600 (2019).; Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining vols 13-17-August-2016 785–794 (Association for Computing Machinery, 2016).; Vass, M. et al. Molecular interaction fingerprint approaches for GPCR drug discovery. Curr. Opin. Pharmacol. 30, 59–68 (2016).; Velázquez-Libera, J. L., Rossino, G., Navarro-Retamal, C., Collina, S. & Caballero, J. Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Front. Chem. 7, (2019).; Khan, M. F., Tang, H., Lyles, J. T. & Pineau, R. Antibacterial Properties of Medicinal Plants From Pakistan Against Multidrug-Resistant ESKAPE. 9, 1–17 (2018).; Atef, N. M., Shanab, S. M., Negm, S. I. & Abbas, Y. A. Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. 9, (2019).; Aparicio, R. & Velasco, J. Composición química y actividad antibacteriana del aceite esencial de los frutos de una nueva especie del género. 158–174 (2017).; https://repositorio.unal.edu.co/handle/unal/80376; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
14
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Pharmacology, Protein-ligand interaction fingerprints, Farmacología, Cheminformatics, Diseño de fármacos asistido por computadora, Pharmaceutical technology, Aprendizaje de maquina, LasR / PqsR / RhlR, 3. Good health, Factores de transcripción, 540 - Química y ciencias afines, Quorum sensing, P. aeruginosa, Pharmaceutical Preparations, Computer-aided drug design, Preparaciones Farmacéuticas, Quimioinformatica, Pseudomonas aeruginosa, Molecular dynamics simulation, Machine learning, Transcriptional factors, Tecnología farmacéutica, Simulaciones de dinámica molecular
Dateibeschreibung: xxii, 147 páginas; application/pdf
Zugangs-URL: https://repositorio.unal.edu.co/handle/unal/80376
-
15
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: 660 - Ingeniería química, Dinámica molecular, Molecular dynamics, Intercambiadores Na+ /Ca2+, Dinámica de Proteínas, Espectroscopia de Resonancia Magnética Nuclear, Simulaciones de Dinámica Molecular, Na+ /Ca2+ Exchangers, Molecular Dynamics Simulations, Nuclear Magnetic Resonance Spectroscopy, Protein Dynamics
Dateibeschreibung: xx, 123 páginas; application/pdf
Relation: Abiko, L. A. (2015). Estudo da dinâmica funcional dos domínios regulatórios do trocador de Na + /Ca 2+ de Drosophila melanogaster por Ressonância Magnética Nuclear em Solução. UNIVERSIDADE DE SÃO PAULO.; Abiko, L. A., Vitale, P. M., Favaro, D. C., Hauk, P., Li, D.-W., Yuan, J., … Brüschweiler, R. (2016). Model for the allosteric regulation of the Na + /Ca 2+ exchanger NCX. Proteins, 84(5), 580–590. https://doi.org/10.1002/prot.25003; Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001; Allnér, O., Foloppe, N., & Nilsson, L. (2015). Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations. Journal of Physical Chemistry B, 119(3), 1114–1128. https://doi.org/10.1021/jp506609g; Bagur, R., & Hajnóczky, G. (2017). Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Molecular Cell, 66(6), 780–788. https://doi.org/10.1016/j.molcel.2017.05.028; Baig, M. H., Sudhakar, D. R., Kalaiarasan, P., Subbarao, N., Wadhawa, G., Lohani, M., … Khan, A. U. (2014). Insight into the effect of inhibitor resistant S130G mutant on physicochemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS ONE, 9(12), 1–19. https://doi.org/10.1371/journal.pone.0112456; Banci, L. (2003). Molecular dynamics simulations of metalloproteins. Current Opinion in Chemical Biology, 7(1), 143–149. https://doi.org/10.1016/S1367-5931(02)00014-5; Bax, A., & Grishaev, A. (2005). Weak alignment NMR: A hawk-eyed view of biomolecular structure. Current Opinion in Structural Biology, 15(5), 563–570. https://doi.org/10.1016/j.sbi.2005.08.006; Berridge, M J, Bootman, M. D., & Lipp, P. (1998). Molecular biology: Calcium - a life and death signal. Nature, 395(October), 645–648. Retrieved from http://dx.doi.org/10.1038/27094; Berridge, M J, Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1(1), 11–21. https://doi.org/10.1038/35036035; Berridge, Michael J, Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4(7), 517–529. https://doi.org/10.1038/nrm1155; Besserer, G. M., Ottolia, M., Nicoll, D. a, Chaptal, V., Cascio, D., Philipson, K. D., & Abramson, J. (2007). The second Ca2+-binding domain of the Na+ Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18467–18472. https://doi.org/10.1073/pnas.0707417104; Blaustein, M. P., & Lederer, W. J. (1999). Sodium/calcium exchange: its physiological implications. Physiological Reviews, 79(3), 763–854.; Boivin, S., Kozak, S., & Meijers, R. (2013). Optimization of protein purification and characterization using Thermofluor screens. Protein Expression and Purification, 91(2), 192–206. https://doi.org/10.1016/j.pep.2013.08.002; Boyman, L., Mikhasenko, H., Hiller, R., & Khananshvili, D. (2009). Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. Journal of Biological Chemistry, 284(10), 6185–6191. https://doi.org/10.1074/jbc.M809012200; Bronner, F. (2001). Extracellular and intracellular regulation of calcium homeostasis. TheScientificWorldJournal, 1, 919–925. https://doi.org/10.1100/tsw.2001.489; Carafoli, Ernest, Malmström, K., Sigel, E., & Crompton, M. (1976). THE REGULATION OF INTRACELLULAR CALCIUM. Clinical Endocrinology, 5(s1), s49–s59. https://doi.org/10.1111/j.1365-2265.1976.tb03815.x; Carafoli, Ernesto. (1984). Intracellular calcium. General Pharmacology: The Vascular System, 15(5), 439. https://doi.org/10.1016/0306-3623(84)90065-X; Cavanagh, J., Fairbrother, W. J., Palmer III, A. G., Rance, M., & Skelton, N. J. (2007). Protein NMR Spectroscopy: Principles and Practice. In Protein NMR Spectroscopy (Vol. 2nd). Retrieved from http://www.amazon.fr/Protein-NMR-Spectroscopy-PrinciplesPractice/dp/012164491X; Chaptal, V., Besserer, G. M., Ottolia, M., Nicoll, D. a., Cascio, D., Philipson, K. D., & Abramson, J. (2007). How Does Regulatory Ca2+ Regulate the Na+-Ca2+ Exchanger? Channels, 1(6), 397–399. https://doi.org/10.4161/chan.1.6.5640; Chen, K., & Tjandra, N. (2011). The Use of Residual Dipolar Coupling in Studying Proteins by NMR. In NMR of Proteins and Small Biomolecules (pp. 47–67). https://doi.org/10.1007/128_2011_215; De La Torre, J. G., Huertas, M. L., & Carrasco, B. (2000). HYDRONMR: Prediction of NMR Relaxation of Globular Proteins from Atomic-Level Structures and Hydrodynamic Calculations. Journal of Magnetic Resonance, 147(1), 138–146. https://doi.org/10.1006/jmre.2000.2170; Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 6(3), 277–293. https://doi.org/10.1007/BF00197809; Dick, F. (1994). Acid cleavage/deprotection in Fmoc/tBu solid-phase peptide synthesis. Methods in Molecular Biology (Clifton, N.J.), 35, 63–72. https://doi.org/10.1385/0-89603- 273-6:63; Dosset, P., Hus, J. C., Blackledge, M., & Marion, D. (2000). Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. Journal of Biomolecular NMR, 16(1), 23–28. https://doi.org/10.1023/A:1008305808620; Dyck, C., Maxwell, K., Buchko, J., Trac, M., Omelchenko, A., Hnatowich, M., & Hryshko, L. V. (1998). Structure-Function Analysis of CALX1.1, a Na + -Ca 2+ Exchanger from Drosophila. Journal of Biological Chemistry, 273(21), 12981–12987. https://doi.org/10.1074/jbc.273.21.12981; Dyck, C., Omelchenko, A., Elias, C. L., Quednau, B. D., Philipson, K. D., Hnatowich, M., & Hryshko, L. V. (1999). Ionic Regulatory Properties of Brain and Kidney Splice Variants of the Ncx1 Na+–Ca2+ Exchanger. The Journal of General Physiology, 114(5), 701–711. https://doi.org/10.1085/jgp.114.5.701; Favier, A., & Brutscher, B. (2019). NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. Journal of Biomolecular NMR, 73(5), 199–211. https://doi.org/10.1007/s10858-019-00249-1; Gáspári, Z., & Perczel, A. (2010). Protein Dynamics as Reported by NMR. Annual Reports on NMR Spectroscopy, 71(C), 35–75. https://doi.org/10.1016/B978-0-08-089054- 8.00002-2; Giladi, M., Bohbot, H., Buki, T., Schulze, D. H., Hiller, R., & Khananshvili, D. (2012). Dynamic features of allosteric Ca 2+ sensor in tissue-specific NCX variants. Cell Calcium, 51(6), 478–485. https://doi.org/10.1016/j.ceca.2012.04.007; Giladi, M., Boyman, L., Mikhasenko, H., Hiller, R., & Khananshvili, D. (2010). Essential role of the CBD1-CBD2 linker in slow dissociation of Ca 2+ from the regulatory twodomain tandem of NCX1. Journal of Biological Chemistry, 285(36), 28117–28125. https://doi.org/10.1074/jbc.M110.127001; Giladi, M., Sasson, Y., Fang, X., Hiller, R., Buki, T., Wang, Y. X., … Khananshvili, D. (2012). A common CA2+-driven interdomain module governs eukaryotic NCX regulation. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0039985; Gill, M. L., & Palmer, A. G. (2014). Local isotropic diffusion approximation for coupled internal and overall molecular motions in NMR spin relaxation. Journal of Physical Chemistry B, 118(38), 11120–11128. https://doi.org/10.1021/jp506580c; Guvench, O., & MacKerell, A. D. (2008). Comparison of Protein Force Fields for Molecular Dynamics Simulations. In Methods in Molecular Biology (Vol. 443, pp. 63–88). https://doi.org/10.1007/978-1-59745-177-2_4; Halty-deLeon, L., Hansson, B. S., & Wicher, D. (2018). The Drosophila melanogaster Na+/Ca2+ Exchanger CALX Controls the Ca2+ Level in Olfactory Sensory Neurons at Rest and After Odorant Receptor Activation. Frontiers in Cellular Neuroscience, 12(July), 1–9. https://doi.org/10.3389/fncel.2018.00186; Hendus-Altenburger, R., Wang, X., Sjøgaard-Frich, L. M., Pedraz-Cuesta, E., Sheftic, S. R., Bendsøe, A. H., … Peti, W. (2019). Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-11391-7; Hilge, M. (2012). Ca2+ Regulation of Ion Transport in the Na+/Ca2+ Exchanger. Journal of Biological Chemistry, 287(38), 31641–31649. https://doi.org/10.1074/jbc.R112.353573; Hilge, Mark. (2013). Ca2+ Regulation in the Na+/Ca2+ Exchanger Features a Dual Electrostatic Switch Mechanism. In L. Annunziato (Ed.), Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications SE - 3 (pp. 27–33). https://doi.org/10.1007/978-1-4614-4756-6_3; Hilge, Mark, Aelen, J., Foarce, A., Perrakis, A., & Vuister, G. W. (2009). Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proceedings of the …, 106(34), 14333. https://doi.org/10.1073/pnas.0902171106; Hilge, Mark, Aelen, J., & Vuister, G. W. (2006). Ca2+ Regulation in the Na+/Ca2+ Exchanger Involves Two Markedly Different Ca2+ Sensors. Molecular Cell, 22(1), 15–25. https://doi.org/10.1016/j.molcel.2006.03.008; Hilgemann, D. W., Collins, A., & Matsuoka, S. (1992). Steady-state and dynamic properties of cardiac sodium-calcium exchange: Secondary modulation by cytoplasmic calcium and ATP. Journal of General Physiology, 100(6), 933–961. https://doi.org/10.1085/jgp.100.6.933; Hilgemann, D. W., Nicoll, D. A., & Philipson, K. D. (1991). Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature, Vol. 352, pp. 715–718. https://doi.org/10.1038/352715a0; Hore, P. J. (1995). Nuclear Magnetic Resonance (First). New York, NY: Oxford University Press Inc.; Hryshko, L. V., Matsuoka, S., Nicoll, D. A., Weiss, J. N., Schwarz, E. M., Benzer, S., & Philipson, K. D. (1996). Anomalous regulation of the Drosophila Na(+)-Ca2+ exchanger by Ca2+. The Journal of General Physiology, 108(1), 67–74. https://doi.org/10.1085/jgp.108.1.67; Hu, W., & Wang, L. (2006). Residual Dipolar Couplings: Measurements and Applications to Biomolecular Studies. Annual Reports on NMR Spectroscopy, 58, 231–303. https://doi.org/10.1016/S0066-4103(05)58005-0 Ishima, R., & Torchia, D. (2000). Protein dynamics from NMR. Nature Structural Biology, 7(9), 740–743. https://doi.org/10.1038/78963; Johnson, E., Bruschweiler-Li, L., Showalter, S. a, Vuister, G. W., Zhang, F., & Brüschweiler, R. (2008). Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. Journal of Molecular Biology, 377, 945–955. https://doi.org/10.1016/j.jmb.2008.01.046; Johnson, E., Brüschweiler, R., & Showalter, S. A. (2008). A multifaceted approach to the interpretation of NMR order parameters: a case study of a dynamic alpha-helix. The Journal of Physical Chemistry. B, 112(19), 6203–6210. https://doi.org/10.1021/jp711160t; Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679– 6685. https://doi.org/10.1073/pnas.0408930102; Kay, L. E. (1998). Protein dynamics from NMR. Nature Structural Biology, 5(7), 513–517. https://doi.org/10.1038/755; Keeler, J. (2011). Understanding NMR Spectroscopy. John Wiley & Sons. .; Kempf, J. G., & Loria, J. P. (2002). Protein dynamics from solution NMR: Theory and applications. Cell Biochemistry and Biophysics, 37(3), 187–211. https://doi.org/10.1385/CBB:37:3:187; Khananshvili, D. (2014). Sodium-calcium exchangers (NCX): Molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Archiv European Journal of Physiology, 466, 43–60. https://doi.org/10.1007/s00424-013-1405-y; Khananshvili, D. (2020). Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium, 85(November 2019), 102131. https://doi.org/10.1016/j.ceca.2019.102131; Kleckner, I. R., & Foster, M. P. (2011). An introduction to NMR-based approaches for measuring protein dynamics. Biochimica et Biophysica Acta - Proteins and Proteomics, 1814(8), 942–968. https://doi.org/10.1016/j.bbapap.2010.10.012; Kozak, S., Lercher, L., Karanth, M. N., Meijers, R., Carlomagno, T., & Boivin, S. (2016). Optimization of protein samples for NMR using thermal shift assays. Journal of Biomolecular NMR, 64(4), 281–289. https://doi.org/10.1007/s10858-016-0027-z; Kramer, F., Deshmukh, M. V., Kessler, H., & Glaser, S. J. (2004). Residual dipolar coupling constants: An elementary derivation of key equations. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 21(1), 10–21. https://doi.org/10.1002/cmr.a.20003; Kummerlowe, G., Schmitt, S., & Luy, B. (2010). Cross-Fitting of Residual Dipolar Couplings. The Open Spectroscopy Journal, 4(1), 16–27. https://doi.org/10.2174/1874383801004010016; Leach, A. R. (2001). Molecular modelling: Principles and applications-Prentice Hall (2nd ed.). Pearson- Prentice Hall; Lemkul, J. (2018). From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068 Li, D. W., & Brüschweiler, R. (2010). NMR-based protein potentials. Angewandte Chemie - International Edition, 49(38), 6778–6780. https://doi.org/10.1002/anie.201001898; Li, Z., Nicoll, D. A., Collins, A., Hilgemann, D. W., Filoteo, A. G., Penniston, J. T., … Philipson, K. D. (1991). Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. Journal of Biological Chemistry, 266(2), 1014–1020.; Liao, J., Li, H., Zeng, W., Sauer, D. B., Belmares, R., & Jiang, Y. (2012). Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger. Science, 335(curve 1), 686–690. https://doi.org/10.1126/science.1215759; Liao, Jun, Marinelli, F., Lee, C., Huang, Y., Faraldo-Gómez, J. D., & Jiang, Y. (2016). Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger. Nature Structural and Molecular Biology, 23(6), 590–599. https://doi.org/10.1038/nsmb.3230; Libreros, G. A. (2018). L , D-transpeptidases de Mycobacterium tuberculosis : Estudo das interações com antibióticos β -lactâmicos e triagem de fragmentos. Universidade Estadual Paulista, Julio de Mesquita Filho (UNESP).; Lipari, G., & Szabo, A. (1982a). Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 1. Theory and Range of Validity. Journal of the American Chemical Society, 104(17), 4546–4559. https://doi.org/10.1021/ja00381a009; Lipari, G., & Szabo, A. (1982b). Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 2. Analysis of Experimental Results. Journal of the American Chemical Society, 104(17), 4559–4570. https://doi.org/10.1021/ja00381a010; Losonczi, J. A., Andrec, M., Fischer, M. W. F., & Prestegard, J. H. (1999). Order Matrix Analysis of Residual Dipolar Couplings Using Singular Value Decomposition. Journal of Magnetic Resonance, 138(2), 334–342. https://doi.org/10.1006/jmre.1999.1754; Lümmen, P. (2013). Calcium Channels as Molecular Target Sites of Novel Insecticides. In Advances in Insect Physiology (Vol. 44, pp. 287–347). https://doi.org/10.1016/B978-0-12- 394389-7.00005-3; Lytton, J. (2007). Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+ transport. Biochemical Journal, 406(3), 365–382. https://doi.org/10.1042/BJ20070619 Martín-Santamaría, S. (Ed.). (2017). Computational Tools for Chemical Biology. https://doi.org/10.1039/9781788010139; Massi, F., Johnson, E., Wang, C., Rance, M., & Palmer, A. G. (2004). NMR R 1 ρ Rotating-Frame Relaxation with Weak Radio Frequency Fields. Journal of the American Chemical Society, 126(7), 2247–2256. https://doi.org/10.1021/ja038721w; Matsuoka, S., Nicoll, D. A., He, Z., & Philipson, K. D. (1997). Regulation of the Cardiac Na+-Ca2+ exchanger by the endogenous XIP region. Journal of General Physiology, 109(2), 273–286. https://doi.org/10.1085/jgp.109.2.273; McFadzean, I., & Gibson, A. (2002). The developing relationship between receptoroperated and store-operated calcium channels in smooth muscle. British Journal of Pharmacology, 135(1), 1–13. https://doi.org/10.1038/sj.bjp.0704468; Miroux, B., & Walker, J. E. (1996). Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. Journal of Molecular Biology, 260(3), 289–298. https://doi.org/10.1006/jmbi.1996.0399; Molinaro, P., Pannaccione, A., Sisalli, M. J., Secondo, A., Cuomo, O., Sirabella, R., … Annunziato, L. (2015). A new cell-penetrating peptide that blocks the autoinhibitory XIP domain of NCX1 and enhances antiporter activity. Molecular Therapy : The Journal of the American Society of Gene Therapy, 23(3), 465–476. https://doi.org/10.1038/mt.2014.231; Morgon, N. H., & Coutinho, K. R. (2007). Métodos de química teórica e modelagem molecular. Editora Livraria da Física.; Morin, S. (2011). A practical guide to protein dynamics from 15N spin relaxation in solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 59(3), 245–262. https://doi.org/10.1016/j.pnmrs.2010.12.003; Nicoll, D. A., Ottolia, M., Goldhaber, J. I., & Philipson, K. D. (2013). 20 years from NCX purification and cloning: milestones. Advances in Experimental Medicine and Biology, 961, 17–23. https://doi.org/10.1007/978-1-4614-4756-6_2; Nicoll, D. A., Sawaya, M. R., Kwon, S., Cascio, D., Philipson, K. D., & Abramson, J. (2006). The crystal structure of the primary Ca2+ sensor of the Na +/Ca2+ exchanger reveals a novel Ca2+ binding motif. Journal of Biological Chemistry, 281(31), 21577– 21581. https://doi.org/10.1074/jbc.C600117200; Olsson, M. H. M., SØndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z; Omelchenko, a, Dyck, C., Hnatowich, M., Buchko, J., Nicoll, D. a, Philipson, K. D., & Hryshko, L. V. (1998). Functional differences in ionic regulation between alternatively spliced isoforms of the Na+-Ca2+ exchanger from Drosophila melanogaster. The Journal of General Physiology, 111(May), 691–702. https://doi.org/10.1085/jgp.111.5.691; On, C., Marshall, C. R., Chen, N., Moyes, C. D., & Tibbits, G. F. (2008). Gene Structure Evolution of the Na+-Ca2+ Exchanger (NCX) Family. BMC Evolutionary Biology, 8(1), 127. https://doi.org/10.1186/1471-2148-8-127; Ottolia, M., Nicoll, D. A., & Philipson, K. D. (2009). Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. Journal of Biological Chemistry, 284(47), 32735–32741. https://doi.org/10.1074/jbc.M109.055434; Palmer, A. G. (1997). Probing molecular motion by NMR. Current Opinion in Structural Biology, 7(5), 732–737. https://doi.org/10.1016/S0959-440X(97)80085-1; Palmer, A. G. (2004). NMR characterization of the dynamics of biomacromolecules. Chemical Reviews, 104(8), 3623–3640. https://doi.org/10.1021/cr030413t; Palmer, A. G., Williams, J., & McDermott, A. (1996). Nuclear magnetic resonance studies of biopolymer dynamics. Journal of Physical Chemistry, 100(31), 13293–13310. https://doi.org/10.1021/jp9606117; Parekh, A. B., & Putney, J. W. (2005). Store-Operated Calcium Channels. Physiological Reviews, 85(2), 757–810. https://doi.org/10.1152/physrev.00057.2003; Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084; Philipson, Keneth D., Nicoll, D. A., Ottolia, M., Quednau, B. D., Reuter, H., John, S., & Qiu, Z. (2006). The Na+/Ca2+ Exchange Molecule. Annals of the New York Academy of Sciences, 976(1), 1–10. https://doi.org/10.1111/j.1749-6632.2002.tb04708.x; Philipson, Kenneth D., & Nicoll, D. A. (2000). Sodium-Calcium Exchange: A Molecular Perspective. Annual Review of Physiology, 62(1), 111–133. https://doi.org/10.1146/annurev.physiol.62.1.111; Reeves, J. P. (1998). Na+/Ca2+ exchange and cellular Ca2+ homeostasis. Journal of Bioenergetics and Biomembranes, 30(2), 151–160. https://doi.org/10.1023/A:1020569224915; Reeves, J. P., & Condrescu, M. (2008). Ionic regulation of the cardiac sodium-calcium exchanger. Channels, 2(5), 322–328. https://doi.org/10.4161/chan.2.5.6897; Ren, X., & Philipson, K. D. (2013). The topology of the cardiac Na+/Ca2+ exchanger, NCX1. Journal of Molecular and Cellular Cardiology, 57(1), 68–71. https://doi.org/10.1016/j.yjmcc.2013.01.010; Rule, G. S., & Hitchens, T. K. (2006). Fundamentals of Protein NMR Spectroscopy. In Focus on Structural Biology: Vol. 5. https://doi.org/10.1007/1-4020-3500-4; Salinas, R. K., Bruschweiler-Li, L., Johnson, E., & Brus̈chweiler, R. (2011). Ca 2+ binding alters the interdomain flexibility between the two cytoplasmic calcium-binding domains in the Na +/Ca 2+ exchanger. Journal of Biological Chemistry, 286(37), 32123–32131. https://doi.org/10.1074/jbc.M111.249268; Sass, J., Cordier, F., Hoffmann, A., Rogowski, M., Cousin, A., Omichinski, J. G., … Grzesiek, S. (1999). Purple membrane induced alignment of biological macromolecules in the magnetic field. Journal of the American Chemical Society, 121(10), 2047–2055. https://doi.org/10.1021/ja983887w; Schwarz, E. M., & Benzer, S. (1997). Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 94(19), 10249–10254. https://doi.org/10.1073/pnas.94.19.10249; Scopes, R. K. (1974). Measurement of protein by spectrophotometry at 205 nm. Analytical Biochemistry, 59(1), 277–282. https://doi.org/10.1016/0003-2697(74)90034-7; Sebastián Yagüe, Á., Pascua García, A., Sebastían, F., Aguirre, J., León, E., Bajic, D., & Baú, D. (2014). Bioinformática con Ñ (1st ed.; A. Sebastián & A. Pascual-García, Eds.). https://doi.org/10.5281/zenodo.1065032; Sharma, V., & O’Halloran, D. M. (2014). Recent structural and functional insights into the family of sodium calcium exchangers. Genesis, 52(2), 93–109. https://doi.org/10.1002/dvg.22735; Shen, Y., & Bax, A. (2013). Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. Journal of Biomolecular NMR, 56(3), 227–241. https://doi.org/10.1007/s10858-013-9741-y; Singh, R. K., Blossom, B. M., Russo, D. A., Van Oort, B., Croce, R., Jensen, P. E., … Bjerrum, M. J. (2019). Thermal unfolding and refolding of a lytic polysaccharide monooxygenase from: Thermoascus aurantiacus. RSC Advances, 9(51), 29734–29742. https://doi.org/10.1039/c9ra05920b; Skora, L., Mestan, J., Fabbro, D., Jahnke, W., & Grzesiek, S. (2013). NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 110(47). https://doi.org/10.1073/pnas.1314712110; Song, Y., Dimaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T., … Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure, 21(10), 1735–1742. https://doi.org/10.1016/j.str.2013.08.005; Stabelini, T. C. (2018). Estudos estruturais de fragmentos do trocador de Na+/Ca2+ por RMN em solução (Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo). https://doi.org/10.11606/D.46.2018.tde-11122018-091550; Strickland, M., & Tjandra, N. (2018). Residual dipolar coupling for conformational and dynamic studies. Modern Magnetic Resonance, 419–434. https://doi.org/10.1007/978-3- 319-28388-3_86; Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211–222. https://doi.org/10.1007/s00253- 006-0465-8; Tolman, J. R., & Ruan, K. (2006). NMR residual dipolar couplings as probes of biomolecular dynamics. Chemical Reviews, 106(5), 1720–1736. https://doi.org/10.1021/cr040429z; Verkhratsky, A., Trebak, M., Perocchi, F., Khananshvili, D., & Sekler, I. (2018). Crosslink between calcium and sodium signalling. Experimental Physiology, 103(2), 157–169. https://doi.org/10.1113/EP086534; Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., … Laue, E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins, 59(4), 687–696. https://doi.org/10.1002/prot.20449; Wang, T., Xu, H., Oberwinkler, J., Gu, Y., Hardie, R. C., & Montell, C. (2005). Light activation, adaptation, and cell survival functions of the Na + /Ca 2+ exchanger CalX. Neuron, 45(3), 367–378. https://doi.org/10.1016/j.neuron.2004.12.046; William Studier, F., Rosenberg, A. H., Dunn, J. J., & Dubendorff, J. W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 185(C), 60–89. https://doi.org/10.1016/0076-6879(90)85008-C; Wu, M., Le, H. D., Wang, M., Yurkov, V., Omelchenko, A., Hnatowich, M., … Zheng, L. (2010). Crystal structures of progressive Ca2+ binding states of the Ca2+ sensor Ca2+ binding domain 1 (CBD1) from the CALX Na+/Ca2+ exchanger reveal incremental conformational transitions. Journal of Biological Chemistry, 285(4), 2554–2561. https://doi.org/10.1074/jbc.M109.059162; Wu, M., Tong, S., Gonzalez, J., Jayaraman, V., Spudich, J. L., & Zheng, L. (2011). Structural Basis of the Ca 2+ Inhibitory Mechanism of Drosophila Na +/Ca 2+ Exchanger CALX and Its Modification by Alternative Splicing. Structure, 19(10), 1509–1517. https://doi.org/10.1016/j.str.2011.07.008; Wu, M., Wang, M., Nix, J., Hryshko, L. V., & Zheng, L. (2009). Crystal Structure of CBD2 from the Drosophila Na+/Ca2+ Exchanger: Diversity of Ca2+ Regulation and Its Alternative Splicing Modification. Journal of Molecular Biology, 387(1), 104–112. https://doi.org/10.1016/j.jmb.2009.01.045; Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. In A Wiley-Interscience Publication. Retrieved from https://books.google.com.br/books?id=zfBqAAAAMAAJ; Yuan, J., Yuan, C., Xie, M., Yu, L., Bruschweiler-Li, L., & Bruschweiler, R. (2018). The Intracellular Loop of the Na+/Ca2+ Exchanger Contains an “awareness Ribbon” Shaped Two-helix Bundle Domain. Biochemistry, 1. https://doi.org/10.1021/acs.biochem.8b00300; Zheng, L., Wu, M., & Tong, S. (2013). Structural Studies of the Ca2+ Regulatory Domain of Drosophila Na+/Ca2+ Exchanger CALX. In L. Annunziato (Ed.), Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications (pp. 55–63). https://doi.org/10.1007/978-1-4614-4756-6_6; Abiko, L. A., Vitale, P. M., Favaro, D. C., Hauk, P., Li, D.-W., Yuan, J., … Brüschweiler, R. (2016). Model for the allosteric regulation of the Na + /Ca 2+ exchanger NCX. Proteins: Structure, Function, and Bioinformatics, 84(5), 580–590. https://doi.org/10.1002/prot.25003; Boivin, S., Kozak, S., & Meijers, R. (2013). Optimization of protein purification and characterization using Thermofluor screens. Protein Expression and Purification, 91(2), 192–206. https://doi.org/10.1016/j.pep.2013.08.002.; Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 6(3), 277–293. https://doi.org/10.1007/BF00197809.; Hendus-Altenburger, R., Wang, X., Sjøgaard-Frich, L. M., Pedraz-Cuesta, E., Sheftic, S. R., Bendsøe, A. H., … Peti, W. (2019). Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-11391-7.; Kozak, S., Lercher, L., Karanth, M. N., Meijers, R., Carlomagno, T., & Boivin, S. (2016). Optimization of protein samples for NMR using thermal shift assays. Journal of Biomolecular NMR, 64(4), 281–289. https://doi.org/10.1007/s10858-016-0027-z.; Miroux, B., & Walker, J. E. (1996). Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. Journal of Molecular Biology, 260(3), 289–298. https://doi.org/10.1006/jmbi.1996.0399.; Scopes, R. K. (1974). Measurement of protein by spectrophotometry at 205 nm. Analytical Biochemistry, 59(1), 277–282. https://doi.org/10.1016/0003-2697(74)90034-7.; Singh, R. K., Blossom, B. M., Russo, D. A., Van Oort, B., Croce, R., Jensen, P. E., … Bjerrum, M. J. (2019). Thermal unfolding and refolding of a lytic polysaccharide monooxygenase from: Thermoascus aurantiacus. RSC Advances, 9(51), 29734–29742. https://doi.org/10.1039/c9ra05920b.; Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211–222. https://doi.org/10.1007/s00253- 006-0465-8.; Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., … Laue, E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins, 59(4), 687–696. https://doi.org/10.1002/prot.20449.; William Studier, F., Rosenberg, A. H., Dunn, J. J., & Dubendorff, J. W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 185(C), 60–89. https://doi.org/10.1016/0076-6879(90)85008-C.; https://repositorio.unal.edu.co/handle/unal/80816; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https:/repositorio.una.edu.co
Verfügbarkeit: https://repositorio.unal.edu.co/handle/unal/80816
https:/repositorio.una.edu.co -
16
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Simulaciones de Dinámica Molecular, Protein Dynamics, Nuclear Magnetic Resonance Spectroscopy, Intercambiadores Na+ /Ca2+, Molecular Dynamics Simulations, Na+ /Ca2+ Exchangers, Dinámica molecular, 660 - Ingeniería química, Molecular dynamics, Espectroscopia de Resonancia Magnética Nuclear, Dinámica de Proteínas
Dateibeschreibung: xx, 123 páginas; application/pdf
Zugangs-URL: https://repositorio.unal.edu.co/handle/unal/80816
-
17
Autoren:
Weitere Verfasser:
Schlagwörter: 539.199, 615.1, 004.4, 519.6, Computational chemistry, innate immunity, receptor molecular recognition processes, drug design, lectins, Galectins, DC-SIGN, Toll-like 4 receptor (TLR4), computational techniques, molecular dynamics simulations, conformational analysis, quantum mechanics calculations, molecular modeling, chemistry computational, Química computacional, inmunidad innata, procesos reconocimiento molecular de receptores, diseño de fármacos, lectinas, Galectinas, receptor Toll-like 4 (TLR4), técnicas computacionales, simulaciones de dinámica molecular
Time: 547, 543, 60
Dateibeschreibung: application/pdf
Verfügbarkeit: https://hdl.handle.net/20.500.14352/11106
-
18
Autoren:
Weitere Verfasser:
Quelle: Docta Complutense
instname
E-Prints Complutense. Archivo Institucional de la UCM
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de MadridSchlagwörter: Bioquímica, Computational chemistry, lectinas, drug design, Farmacología, Galectins, Química computacional, quantum mechanics calculations, 615.1, química computacional, Cibernética matemática, 519.6, DC-SIGN, chemistry computational, 1207.03 Cibernética, simulaciones de dinámica molecular, procesos reconocimiento molecular de receptores, modelado molecular, análisis conformacional, innate immunity, Biología molecular (Química), receptor molecular recognition processes, Toll-like 4 receptor (TLR4), inmunidad innata, Biología molecular, receptor Toll-like 4 (TLR4), molecular modeling, Galectinas, conformational analysis, Química orgánica, técnicas computacionales, cálculos de mecánica cuántica, 539.199, Bioquímica (Química), molecular dynamics simulations, Bioinformática, 2306 Química Orgánica, lectins, computational techniques, diseño de fármacos, Farmacología (Farmacia), 3209 Farmacología, 004.4, Química orgánica (Química), Biología molecular (Farmacia)
Dateibeschreibung: application/pdf
-
19
Autoren:
Weitere Verfasser:
Quelle: Universidad Católica de Santa María ; Repositorio de la Universidad Católica de Santa María - UCSM
Schlagwörter: Trypanosoma cruzi, Simulaciones de dinámica molecular, Cobre, Diagnóstico temprano, Tripanotión reductasa, https://purl.org/pe-repo/ocde/ford#3.01.00
Dateibeschreibung: application/pdf
Verfügbarkeit: http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/10770
-
20
Autoren:
Weitere Verfasser:
Schlagwörter: FULLERENOS, PELICULAS DELGADAS DE CARBONO, PROPIEDADES ESTRUCTURALES ELECTRICAS Y MECANICAS, ESTABILIDAD TERMICA, SIMULACIONES DE DINAMICA MOLECULAR, FULLERENES, CARBON THIN FILMS, STRUCTURAL ELECTRICAL AND MECHANICAL PROPERTIES, THERMAL STABILITY, MOLECULAR DYNAMICS SIMULATIONS
Dateibeschreibung: application/pdf
Nájsť tento článok vo Web of Science
Full Text Finder