Suchergebnisse - "Retracción"

  1. 1
  2. 2

    Weitere Verfasser: University/Department: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental

    Thesis Advisors: Etxeberria Larrañaga, Miren

    Quelle: TDX (Tesis Doctorals en Xarxa)

    Dateibeschreibung: application/pdf

  3. 3

    Weitere Verfasser: University/Department: Universitat de Girona. Departament d'Enginyeria mecànica i de la construcció industrial

    Thesis Advisors: cristina.mias@udg.edu, Torres Llinàs, Lluís, Turon Travesa, Albert

    Quelle: TDX (Tesis Doctorals en Xarxa)

    Dateibeschreibung: application/pdf

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Quelle: Materiales de Construcción; Vol. 75 No. 357 (2025); e365 ; Materiales de Construcción; Vol. 75 Núm. 357 (2025); e365 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2025.v75.i357

    Dateibeschreibung: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3837/4394; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3837/4399; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3837/4400; Mo KH, Thomas BS, Yap SP, Abutaha F, Tan CG. 2020. Viability of agricultural wastes as substitute of natural aggregate in concrete: A review on the durability-related properties. J. Clean. Prod. 275:123062. https://doi.org/10.1016/j.jclepro.2020.123062; Muthusamy K, Hafizuddin Rasid M, Nabilah Isa N, Hanis Hamdan N, Atikah Shafika Jamil N, Mokhtar Albshir Budiea A, Wan Ahmad S. 2021. Mechanical properties and acid resistance of oil palm shell lightweight aggregate concrete containing coal bottom ash. Mater. Today Proc. 41(1):47-50. https://doi.org/10.1016/j.matpr.2020.10.1001; Hamada HM, Skariah Thomas B, Tayeh B, Yahaya FM, Muthusamy K, Yang J. 2020. Use of oil palm shell as an aggregate in cement concrete: A review. Constr. Build. Mater. 265:120357. https://doi.org/10.1016/j.conbuildmat.2020.120357; Mannan MA, Ganapathy C. 2001. Mix design for oil palm shell concrete. Cem. Concr. Res. 31(9):1323-1325. https://doi.org/10.1016/S0008-8846(01)00585-3; Alengaram UJ, Mahmud H, Jumaat MZ. 2011. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete. Mater. Des. 32(4):2143-2148. https://doi.org/10.1016/j.matdes.2010.11.035; Yew MK, Mahmud H, Ang B, Yew M. 2014. Effects of oil palm shell coarse aggregate species on high strength lightweight concrete. Sci. World J. 2014:387647. https://doi.org/10.1155/2014/387647 PMid:24982946 PMCid:PMC4058116; Shafigh P, Jumaat MZ, Mahmud H. 2011. Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Constr. Build. Mater. 25(4):1848-1853. https://doi.org/10.1016/j.conbuildmat.2010.11.075; Maghfouri M, Shafigh P, Aslam M. 2018. Optimum oil palm shell content as coarse aggregate in concrete based on mechanical and durability properties. Adv. Mater. Sci. Eng. 2018:4271497. https://doi.org/10.1155/2018/4271497; Ting TZH, Rahman ME, Lau HH. 2020. Sustainable lightweight self-compacting concrete using oil palm shell and fly ash. Constr. Build. Mater. 264:120590. https://doi.org/10.1016/j.conbuildmat.2020.120590; Kareem MA, Raheem AA, Oriola KO, Abdulwahab R. 2022. A review on application of oil palm shell as aggregate in concrete - Towards realising a pollution-free environment and sustainable concrete. Environ. Chall. 8:100531. https://doi.org/10.1016/j.envc.2022.100531; Nadh VS, Vignan GS, Hemalatha K, Rajani A. 2021. Mechanical and durability properties of treated oil palm shell lightweight concrete. Mater. Today Proc. 47(1):282-285. https://doi.org/10.1016/j.matpr.2021.04.373; Traore YB, Messan A, Hannawi K, Gerard J, Prince W, Tsobnang F. 2018. Effect of oil palm shell treatment on the physical and mechanical properties of lightweight concrete. Constr. Build. Mater. 161:452-460. https://doi.org/10.1016/j.conbuildmat.2017.11.155; Shafigh P, Jumaat MZ, Mahmud HB. 2012. Effect of replacement of normal weight coarse aggregate with oil palm shell on properties of concrete. Arab. J. Sci. Eng. 37:955-964. https://doi.org/10.1007/s13369-012-0233-2; Shafigh P, Nomeli M, Alengaram UJ, Mahmud H, Jumaat MZ. 2016. Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. J. Clean. Prod. 135:148-157. https://doi.org/10.1016/j.jclepro.2016.06.082; Mo KH, Alengaram UJ, Jumaat MZ, Liu MYJ, Lim J. 2016. Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand. J. Clean. Prod. 112(1):763-770. https://doi.org/10.1016/j.jclepro.2015.06.122; Maghfouri M, Alimohammadi V, Gupta R, Saberian M, Azarsa P, Hashemi M, Roychand R. 2022. Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Stud. Constr. Mater. 16:e00919. https://doi.org/10.1016/j.cscm.2022.e00919; Mannan MA, Ganapathy C. 2002. Engineering properties of concrete with oil palm shell as coarse aggregate. Constr. Build. Mater. 16(1):29-34. https://doi.org/10.1016/S0950-0618(01)00030-7; Alengaram UJ. (2009). Mechanical properties and structural behaviour of palm kernel shell foamed and non-foamed concrete. Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya. https://doi.org/10.1201/9780203859926.ch41; Cabrera JG, Lynsdale CJ. 1988. A new gas permeameter for measuring the permeability of mortar and concrete. Mag. Concr. Res. 40(144):177-182. https://doi.org/10.1680/macr.1988.40.144.177; RILEM, CPC 11.3. 1984. Absorption of water by concrete by immersion under vacuum. In: RILEM. Recommendations for the testing and use of constructions materials: E & FN Spon.; Chan SYN, Ji X. 1998. Water sorptivity and chloride diffusivity of oil shale ash concrete. Constr. Build. Mater. 12(4):177-183. https://doi.org/10.1016/S0950-0618(98)00006-3; Shakir AA, Wan Ibrahim MH, Othman NH, Shahidan S. 2019. The effect of palm oil clinker and oil palm shell on the compressive strength of concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 43(1):1-14. https://doi.org/10.1007/s40996-018-0176-2; Selvan JK, Selva N. 2018. Experimental investigation on concrete using oil palm shell. Sci. Technol. Adv. Mater. 4:1-19.; Khankhaje E, Salim MR, Mirza J, Hussin MW, Rafieizonooz M. 2016. Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Constr. Build. Mater. 126:1054-1065. https://doi.org/10.1016/j.conbuildmat.2016.09.010; Ramli M, Akhavan Tabassi A. 2012. Effects of polymer modification on the permeability of cement mortars under different curing conditions: A correlational study that includes pore distributions, water absorption and compressive strength. Constr. Build. Mater. 28(1):561-570. https://doi.org/10.1016/j.conbuildmat.2011.09.004; Tran DL, Mouret M, Cassagnabère F, Phung QT. 2022. Effects of intrinsic granular porosity and mineral admixtures on durability and transport properties of recycled aggregate concretes. Mater. Today Commun. 33:104709. https://doi.org/10.1016/j.mtcomm.2022.104709; Teo DCL, Mannan MA, Kurian VJ. 2010. Durability of lightweight OPS concrete under different curing conditions. Mater. Struct. 43:1-13. https://doi.org/10.1617/s11527-008-9466-7; Krishnamurthy M, Vandanapu SN. 2019. Micro-structural and interfacial transition zone investigation on oil palm shell lightweight concrete. Int. J. Microstruct. Mater. Prop. 14(5):448-461. https://doi.org/10.1504/IJMMP.2019.102222; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3837

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Quelle: Materiales de Construcción; Vol. 74 No. 354 (2024); e344 ; Materiales de Construcción; Vol. 74 Núm. 354 (2024); e344 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2024.v74.i354

    Dateibeschreibung: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3599/4331; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3599/4332; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3599/4333; Gagg CR. 2014. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 40:114-40. https://doi.org/10.1016/j.engfailanal.2014.02.004; Naqi A, Jang JG. 2019. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review. Sustain. 11(2):537. https://doi.org/10.3390/su11020537; Davidovits J. 2017. Geopolymers: Ceramic-like inorganic polymers. J. Ceram. Sci. Technol. 8(3):335-50.; Amran M, Debbarma S, Ozbakkaloglu T. 2021. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 270:121857. https://doi.org/10.1016/j.conbuildmat.2020.121857; Cong P, Cheng Y. 2021. Advances in geopolymer materials: A comprehensive review. J. Traffic. Transp. Eng. 8(3):283-314. https://doi.org/10.1016/j.jtte.2021.03.004; Castel A, Foster SJ, Ng T, Sanjayan JG, Gilbert RI. 2016. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. Constr. 49(5):1619-28. https://doi.org/10.1617/s11527-015-0599-1; Kong DLY, Sanjayan JG. 2010. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40(2):334-339. https://doi.org/10.1016/j.cemconres.2009.10.017; Assi LN, Carter K, Deaver E, Ziehl P. 2020. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 263:121477. https://doi.org/10.1016/j.jclepro.2020.121477; Phoo-Ngernkham T, Chindaprasirt P, Sata V, Pangdaeng S, Sinsiri T. 2013. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive. Int. J. Miner. Metall. Mater. 20(2):214-220. https://doi.org/10.1007/s12613-013-0715-6; Nath SK, Maitra S, Mukherjee S, Kumar S. 2016. Microstructural and morphological evolution of fly ash based geopolymers. Constr. Build. Mater. 111:758-765. https://doi.org/10.1016/j.conbuildmat.2016.02.106; Hadi MNS, Zhang H, Parkinson S. 2019. Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. J. Build. Eng. 23:301-313. https://doi.org/10.1016/j.jobe.2019.02.006; Wazien AZW, Abdullah MMAB, Abd Razak R, Rozainy MAZMR, Tahir MFM. 2016. Strength and density of geopolymer mortar cured at ambient temperature for use as repair material. IOP Conf. Ser. Mater. Sci. Eng. 133(1):012042. https://doi.org/10.1088/1757-899X/133/1/012042; Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, et al. 2015. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews Elsevier. 105-21. https://doi.org/10.1016/j.earscirev.2014.11.016; De Rossi A, Ribeiro MJ, Labrincha JA, Novais RM, Hotza D, Moreira RFPM. 2019. Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. Process. Saf. Environ. Prot. 129:130-137. https://doi.org/10.1016/j.psep.2019.06.026; Adam AA, Horianto. 204. The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia. Eng. 95: 410-414. https://doi.org/10.1016/j.proeng.2014.12.199; Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. 2004. On the development of fly ash-based geopolymer concrete. ACI Mater. J. 101(6):467-72. https://doi.org/10.14359/13485; Nath P, Sarker PK, Rangan VB. 2015. Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia. Eng. 125:601-607. https://doi.org/10.1016/j.proeng.2015.11.077; Nath P, Sarker PK. 2015. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem. Concr. Compos. 55: 205-214. https://doi.org/10.1016/j.cemconcomp.2014.08.008; Shinde BH, Kadam KN. 2016. Properties of fly ash based geopolymer mortar with ambient curing. Int. J. Eng. Res. 8(1).; Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, MacPhee DE. 2011. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO 2-H2O. Cem. Concr. Res. 41(9): 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006; García-Lodeiro I, Fernández-Jiménez A, Palomo A. 2013. Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem. Concr. Res. 52:112-122. https://doi.org/10.1016/j.cemconres.2013.03.022; Mehta A, Siddique R. 2017. Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Constr. Build. Mater. 150:792-807. https://doi.org/10.1016/j.conbuildmat.2017.06.067; Fan CC, Huang R, Hwang H, Chao SJ. 2016. Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes. Constr. Build. Mater. 112:708-715. https://doi.org/10.1016/j.conbuildmat.2016.02.154; Diliberto C, Lecomte A, Aissaoui C, Mechling JM, Izoret L. 2021. The incorporation of fine recycled concrete aggregates as a main constituent of cement. Mater. Struct. Constr. 54(5). https://doi.org/10.1617/s11527-021-01796-6; Ashiquzzaman M, Hossen S. 2013. Cementing property evaluation of recycled fine aggregate. Int. Ref. J. Eng. Sci. 2(5):63-8. Retrieved from https://www.irjes.com/Papers/vol2-issue5/Version%20%201/I256368.pdf.; Lv Z, Chen H. 2012. Modeling of self-healing efficiency for cracks due to unhydrated cement nuclei in hardened cement paste. Procedia. Eng. 27:281-290. https://doi.org/10.1016/j.proeng.2011.12.454; Bordy A, Younsi A, Aggoun S, Fiorio B. 2017. Cement substitution by a recycled cement paste fine: Role of the residual anhydrous clinker. Constr. Build. Mater. 132:1-8. https://doi.org/10.1016/j.conbuildmat.2016.11.080; Ahmari S, Ren X, Toufigh V, Zhang L. 2012. Production of geopolymeric binder from blended waste concrete powder and fly ash. Constr. Build. Mater. 35: 718-729. https://doi.org/10.1016/j.conbuildmat.2012.04.044; Ren P, Li B, Yu JG, Ling TC. 2020. Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks. J. Clean. Prod. 267:122115. https://doi.org/10.1016/j.jclepro.2020.122115; IS 3812. 2013. Specifications for pulverized fuel ash, Part-1: For use as pozzolana in cement, cement mortar and concrete. Bur. Indian Stand. New Delhi, India.1-12.; IS 1727. 1967. Methods of test for pozzolanic materials. Bur. Indian Stand. New Delhi.; IS 4031-7. 1988. Methods of physical tests for hydraulic cement: Determination of compressive strength of masonry cement. Bureau of Indian Standards, New Delhi.; ASTM C642-13. ASTM International. 2013. Standard test method for density, absorption and voids in hardened concrete.; Annu B ASTM Stand. 2001. Standard test method for drying shrinkage of mortar containing hydraulic cement. 2(4): 11-3.; Van Deventer JSJ, Provis JL, Duxson P, Brice DG. 2010. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste and Biomass Valorization. 1(1):145-155. https://doi.org/10.1007/s12649-010-9015-9; Pangdaeng S, Phoo-ngernkham T, Sata V, Chindaprasirt P. 2014. Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater. Des. 53:269-274. https://doi.org/10.1016/j.matdes.2013.07.018; Sharma A, Singh P, Kapoor K. 2022. Utilization of recycled fine powder as an activator in fly ash based geopolymer mortar. Constr. Build. Mater. 323:126581. https://doi.org/10.1016/j.conbuildmat.2022.126581; Kaya M, Köksal F. 2021. Effect of cement additive on physical and mechanical properties of high calcium fly ash geopolymer mortars. Struct. Concr. 22(S1): E452-465. https://doi.org/10.1002/suco.202000235; Ren P, Li B, Yu JG, Ling TC. 2020. Utilization of recycled concrete fines and powders to produce alkali activated slag concrete blocks. J. Clean. Prod. 267:122115. https://doi.org/10.1016/j.jclepro.2020.122115; Afridi S, Sikandar MA, Waseem M, Nasir H, Naseer A. 2019. Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs). Constr. Build. Mater. 217:530-542. https://doi.org/10.1016/j.conbuildmat.2019.05.101; Riahi Dehkordi E, Moodi F, GivKashi MR, Ramezanianpour AA. 2023. Investigation of affecting factors on drying shrinkage and compressive strength of slag geopolymer mortar mixture. Arab. J. Sci. Eng. 49:5679-5696. https://doi.org/10.1007/s13369-023-08373-9; Yan S, Sagoe-Crentsil K. 2012. Properties of wastepaper sludge in geopolymer mortars for masonry applications. J. Environ. Manage. 112:27-32. https://doi.org/10.1016/j.jenvman.2012.07.008 PMid:22868380; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3599

  16. 16
  17. 17
  18. 18

    Autoren: Chen, P. Chen, Q. Fang, Y. et al.

    Quelle: Materiales de Construcción; Vol. 73 No. 349 (2023); e306 ; Materiales de Construcción; Vol. 73 Núm. 349 (2023); e306 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2023.v73.i349

    Dateibeschreibung: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3493/4207; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3493/4208; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3493/4209; Fang, Y.; Wang, J.; Qian, X.; Wang, L.; Chen, P.; Qiao, P. (2022) A renewable admixture to enhance the performance of cement mortars through a pre-hydration method. J. Clean. Prod. 332, 130095. https://doi.org/10.1016/j.jclepro.2021.130095; Xu, D.; Cui, Y.; Li, H.; Yang, K.; Xu, W.; Chen, Y. (2015) On the future of Chinese cement industry. Cem. Concr. Res. 78, 2-13. https://doi.org/10.1016/j.cemconres.2015.06.012; Zhang, C.Y.; Han, R.; Yu, B.; Wei, Y.M. (2018) Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways. J. Clean. Prod. 184, 451-465. https://doi.org/10.1016/j.jclepro.2018.02.284; Chen, P.; Wang, J.; Wang, L.; Xu, Y. (2019) Perforated cenospheres: A reactive internal curing agent for alkali activated slag mortars. Cem. Concr. Compos. 104, 103351. https://doi.org/10.1016/j.cemconcomp.2019.103351; Roy, D.M. (1999) Alkali-activated cements opportunities and challenges. Cem. Concr. Res. 29 [2], 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3; Ye, H.; Radlińska, A. (2017) Shrinkage mitigation strategies in alkali-activated slag. Cem. Concr. Res. 101, 131-143. https://doi.org/10.1016/j.cemconres.2017.08.025; Shi, C.; Roy, D.; Krivenko, P. (2003) Alkali-activated cements and concretes. CRC press. https://doi.org/10.1201/9781482266900; Karozou, A.; Konopisi, S.; Paulidou, E.; Stefanidou, M. (2019) Alkali activated clay mortars with different activators. Constr. Build. Mater. 212, 85-91. https://doi.org/10.1016/j.conbuildmat.2019.03.244; Gonçalves, M.; Vilarinho, I.S.; Capela, M.; Caetano, A.; Novais, R.M.; Labrincha, J.A.; Seabra, M.P. (2021) Waste-based one-part alkali activated materials. Mater. 14 [11], 2911. https://doi.org/10.3390/ma14112911 PMid:34071507 PMCid:PMC8198906; Rodríguez, E.; Bernal, S.; De Gutiérrez, R.M.; Puertas, F. (2008) Alternative concrete based on alkali-activated slag.Mater. Construcc. 58 [291], 53-67. https://doi.org/10.3989/mc.2008.v58.i291.104; Alcaide, J.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Construcc. 57 [288], 33-48.; Palomo, A.; Grutzeck, M.; Blanco, M. (1999) Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 29 [8], 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9; Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T. (2006) Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Construcc.56 [283], 79-90. https://doi.org/10.3989/mc.2006.v56.i283.10; Kumarappa, D.B.; Peethamparan, S.; Ngami, M. (2018) Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem. Concr. Res. 109, 1-9. https://doi.org/10.1016/j.cemconres.2018.04.004; Sakulich, A.R.; Bentz, D.P. (2013) Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Mater. Struct. 46 [8], 1355-1367. https://doi.org/10.1617/s11527-012-9978-z; Ye, H.; Radlińska, A. (2016) Shrinkage mechanisms of alkali-activated slag. Cem. Concr. Res. 88, 126-135. https://doi.org/10.1016/j.cemconres.2016.07.001; Alonso, M.; Rodríguez, A.; Puertas, F. (2018) Viability of the use of construction and demolition waste aggregates in alkali-activated mortars. Mater. Construcc. 68 [331], e164-e164. https://doi.org/10.3989/mc.2018.07417; Gao, X.; Liu, C.; Shui, Z.; Yu, R. (2021) Effects of expansive additives on the shrinkage behavior of coal gangue based alkali activated materials. Crystals. 11 [7], 816. https://doi.org/10.3390/cryst11070816; Hanjitsuwan, S.; Injorhor, B.; Phoo-ngernkham, T.; Damrongwiriyanupap, N.; Li, L-Y.; Sukontasukkul, P.; Chindaprasirt, P. (2020) Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive. Cem. Concr. Compos. 114, 103760. https://doi.org/10.1016/j.cemconcomp.2020.103760; Shuang, L.; Zhi-lu, Z.; De-sha, T.; Wen-cong, H.; Lin-wen, Y.; Kai, Y. (2018) Investigation of the effect of CaO expansive agent on the restricted expansion rate of alkali activated slag mortar. Bull. Chin. Ceram. Soc. 37 [5], 1747-1752. (in Chinese); Habert, G.; De Lacaillerie, J.D.E.; Roussel, N. (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19 [11], 1229-1238. https://doi.org/10.1016/j.jclepro.2011.03.012; Rees, C.A.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. (2008) The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloid Surf. A-Physicochem. Eng. Asp. A. 318 [1-3], 97-105. https://doi.org/10.1016/j.colsurfa.2007.12.019; Criado, M.; Palomo, A.; Fernández-Jiménez, A.; Banfill, P. (2009) Alkali activated fly ash: effect of admixtures on paste rheology. Rheol. Acta. 48 [4], 447-455. https://doi.org/10.1007/s00397-008-0345-5; Jin, F.; Gu, K.; Al-Tabbaa, A. (2014) Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Constr. Build. Mater. 51, 395-404. https://doi.org/10.1016/j.conbuildmat.2013.10.081; Vo, D.H.; Hwang, C.L.; Yehualaw, M.D.; Liao, M.C. (2021) The influence of MgO addition on the performance of alkali-activated materials with slag− rice husk ash blending. J. Build. Eng. 33, 101605. https://doi.org/10.1016/j.jobe.2020.101605; Hwang, C.L.; Vo, D.H.; Tran, V.A.; Yehualaw, M.D. (2018) Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Constr. Build. Mater. 186, 503-513. https://doi.org/10.1016/j.conbuildmat.2018.07.129; Jin, F.; Gu, K.; Abdollahzadeh, A.; Al-Tabbaa, A. (2015) Effects of different reactive MgOs on the hydration of MgO-activated GGBS paste. J. Mater. Civil. Eng. 27 [7], B4014001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001009; Ye, Q.; Yu, K.; Zhang, Z. (2015) Expansion of ordinary Portland cement paste varied with nano-MgO. Constr. Build. Mater. 78, 189-193. https://doi.org/10.1016/j.conbuildmat.2014.12.113; He, J.; Zheng, W.; Bai, W.; Hu, T.; He, J.; Song, X. (2021) Effect of reactive MgO on hydration and properties of alkali-activated slag pastes with different activators. Constr. Build. Mater. 271, 121608. https://doi.org/10.1016/j.conbuildmat.2020.121608; Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. (2014) MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 57, 1-12. https://doi.org/10.1016/j.cemconres.2013.12.007; GB/T18046. (2017) Ground granulated blast furnace slag used for cement, mortar and concrete. Standardization Admination of the Peoples's Republic of China, China. (in Chinese).; DL/T 5296. (2013) Technical specification of magnesium oxide expansive for use in hydraulic concrete. National Energy Administration, China. (in Chinese).; ASTM C191. (2021) Standard test methods for time of setting of hydraulic cement by vicat needle. ASTM International, West Conshohocken, PA.; ASTM C1698. (2019) Standard test method for autogenous strain of cement paste and mortar. ASTM International, West Conshohocken, PA.; ASTM C596. (2018) Standard test method for drying shrinkage of mortar containing hydraulic cement. ASTM International,West Conshohocken, PA.; ASTM C349. (2018) Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). ASTM International, West Conshohocken, PA.; ASTM C348. (2021) Standard test method for flexural strength of hydraulic-cement mortars. ASTM International, West Conshohocken, PA.; Suescum-Morales, D.; Bravo, M.; Silva, R.V.; Jiménez, J.R.; Fernandez-Rodriguez, J.M.; Brito, J. de (2022) Effect of reactive magnesium oxide in alkali-activated fly ash mortars exposed to accelerated CO2 curing. Constr. Build. Mater. 342, 127999. https://doi.org/10.1016/j.conbuildmat.2022.127999; Zhang, J.; Lv, T.; Han, Q.; Zhu, Y.; Hou, D.; Dong, B. (2022) Effects of fly ash on MgO-based shrinkage-compensating cement: microstructure and properties. Constr. Build. Mater. 339, 127648. https://doi.org/10.1016/j.conbuildmat.2022.127648; Kuenzel, C.; Zhang, F.; Ferrandiz-Mas, V.; Cheeseman, C.; Gartner, E. (2018) The mechanism of hydration of MgO-hydromagnesite blends. Cem. Concr. Res. 103, 123-129. https://doi.org/10.1016/j.cemconres.2017.10.003; Rodríguez-Navarro, C.; Hansen, E.; Ginell, W.S. (1998) Calcium hydroxide crystal evolution upon aging of lime putty. J. Am. Ceram. Soc. 81 [11], 3032-3034. https://doi.org/10.1111/j.1151-2916.1998.tb02735.x; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3493

  19. 19
  20. 20