Search Results - "Recursive polynomial interpolation algorithm"
-
1
Authors:
Source: Numerical Algorithms. 76:675-694
Subject Terms: 0101 mathematics, 01 natural sciences
-
2
Authors: et al.
Contributors: et al.
Source: Journal of Computational and Applied Mathematics. 373:112471
Subject Terms: Hermite interpolation polynomials, Polynomial interpolation, Matrix recursive interpolation algorithm, Matrix recursive polynomial interpolation algorithm, Generalized recursive polynomial interpolation algorithm, [MATH] Mathematics [math], 0101 mathematics, 01 natural sciences
-
3
Authors:
Contributors:
Source: Numerical Algorithms. 92:849-867
-
4
Authors: et al.
Contributors: et al.
Source: Numerical Algorithms. 80:253-278
-
5
Authors: et al.
Contributors: et al.
Source: Numerical Algorithms. 77:1069-1092
Subject Terms: Hermite interpolation polynomials, Polynomial interpolation, Matrix recursive interpolation algorithm, Schur complement, [MATH] Mathematics [math], 0101 mathematics, Recursive polynomial interpolation algorithm, 01 natural sciences, Matrix Sylvester identity
-
6
Authors:
Source: Numerical Algorithms; Nov2017, Vol. 76 Issue 3, p675-694, 20p
Subject Terms: INTERPOLATION, POLYNOMIALS, REAL numbers, SET theory, NEWTON-Raphson method
-
7
Authors:
Source: Numerical Algorithms. Aug2020, Vol. 84 Issue 4, p1507-1534. 28p.
Subject Terms: *ALGORITHMS, *POLYNOMIALS, *INTERPOLATION, *LAGRANGE problem, *SCHUR complement, *POLYNOMIAL time algorithms, *INTERPOLATION algorithms, *LAGRANGE multiplier
-
8
Authors: et al.
Source: Numerical Algorithms; Jan2019, Vol. 80 Issue 1, p253-278, 26p
Subject Terms: INTERPOLATION algorithms, HERMITE polynomials, INTERPOLATION, POLYNOMIALS, SET theory
-
9
Authors:
Source: Numerical Algorithms. Jun2025, p1-28.
-
10
-
11
Authors:
Source: Numerical Algorithms; Apr2018, Vol. 77 Issue 4, p1069-1092, 24p
Subject Terms: HERMITE polynomials, ALGORITHMS, INTERPOLATION, LAGRANGE equations, PROBLEM solving
-
12
Authors:
Subject Terms: Numerical Analysis
Relation: http://arxiv.org/abs/2511.09014
Availability: http://arxiv.org/abs/2511.09014
-
13
Authors: et al.
Source: Mathematical Biosciences & Engineering; 2024, Vol. 21 Issue 2, p3364-3390, 27p
-
14
Authors:
Source: Mathematics (2227-7390); Jul2023, Vol. 11 Issue 14, p3157, 28p
-
15
Authors:
Source: Numerical Algorithms; Jan2023, Vol. 92 Issue 1, p849-867, 19p
Subject Terms: POLYNOMIALS, INTERPOLATION algorithms, INTERPOLATION, REAL numbers, SCHUR complement
-
16
Authors:
Source: Numerical Algorithms; Jan2019, Vol. 80 Issue 1, p11-133, 123p
-
17
Authors: et al.
Source: Entropy; Sep2021, Vol. 23 Issue 9, p1207-1207, 1p
Full Text Finder
Nájsť tento článok vo Web of Science