Suchergebnisse - "Pyr-GC/MS"
-
1
Autoren: et al.
Quelle: Environmental Pollution. 372
Schlagwörter: Soil, Tire wear, Heavy metals, Road ditch, Pyr-GC/MS, Microplastics
Dateibeschreibung: electronic
-
2
Autoren: et al.
Quelle: Science of the Total Environment. 980
Schlagwörter: Stormwater, MP, TWP, Land use, μ-FTIR, Pyr-GC/MS, VA-teknik, Urban Water Engineering
Dateibeschreibung: electronic
-
3
-
4
Autoren: et al.
Quelle: Frontiers in Amphibian and Reptile Science, Vol 2 (2024)
Schlagwörter: FT-IR, plastic pollution, QL1-991, wildlife, pyr-GC/MS, health, juvenile green sea turtle, Zoology
-
5
-
6
-
7
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Microplastics; Volume 1; Issue 2; Pages: 229-239
Schlagwörter: MICROPLASTIQUE, [SDE] Environmental Sciences, [CHIM.ANAL] Chemical Sciences/Analytical chemistry, PYR-GC/MS, CHROMATOGRAPHIE EN PHASE GAZEUSE, QUANTIFICATION, SPECTROMETRIE, SEDIMENT, 01 natural sciences, Pyr-GC/MS, matrix effect, sediment, 0104 chemical sciences, [SDU.STU.GC] Sciences of the Universe [physics]/Earth Sciences/Geochemistry, MATRIX EFFECT, PLASTIQUE
Dateibeschreibung: application/pdf
-
8
Autoren: et al.
Quelle: Environmental Management. 76(1):11
Schlagwörter: Microplastics, PYR-GC/MS, Stormwater runoff, Polymer analysis, TED-GC/MS, Bioretention filter
Zugangs-URL: https://research.chalmers.se/publication/549594
-
9
Autoren: et al.
Quelle: Environ Sci Pollut Res Int
Schlagwörter: Microplastics, Microplastics, Polymer Degradation, PET, Polyolefin, Polystyrene, Pyr-GC/MS, SIFT, VOCs, 0211 other engineering and technologies, 02 engineering and technology, Selected Case Studies on the Environment of the Mediterranean and Surrounding Regions, 01 natural sciences, Gas Chromatography-Mass Spectrometry, 6. Clean water, 12. Responsible consumption, 13. Climate action, Plastics, Ecosystem, Water Pollutants, Chemical, Environmental Monitoring, 0105 earth and related environmental sciences
Dateibeschreibung: application/pdf
Zugangs-URL: https://link.springer.com/content/pdf/10.1007/s11356-021-12466-z.pdf
https://pubmed.ncbi.nlm.nih.gov/33502712
https://www.scilit.net/article/6c6636316dc8079bbed8bbd50ec64645
https://link.springer.com/content/pdf/10.1007/s11356-021-12466-z.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384832
https://arpi.unipi.it/handle/11568/1071350?mode=full.517
https://link.springer.com/article/10.1007/s11356-021-12466-z
https://www.ncbi.nlm.nih.gov/pubmed/33502712
https://hdl.handle.net/11568/1071350
https://doi.org/10.1007/s11356-021-12466-z
https://link.springer.com/article/10.1007/s11356-021-12466-z -
10
Autoren: et al.
Quelle: Science of The Total Environment. 947:174493
Schlagwörter: Microplastics, Animals, Food Contamination, Environmental Pollutants, Ruminants, Animal Feed, Extraction protocol optimization, Feeds, Identification, Pyr-GC/MS, Environmental Monitoring
Dateibeschreibung: application/pdf
-
11
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Rencontres 2025 du GDR Plastiques Environnement Santé ; https://univ-eiffel.hal.science/hal-05082031 ; Rencontres 2025 du GDR Plastiques Environnement Santé, Jul 2025, Bordeaux, France. ; https://gdrpes2025.sciencesconf.org/
Schlagwörter: Pyr-GC/MS, IRTF, Microplastiques, [CHIM]Chemical Sciences, [SDE]Environmental Sciences
Verfügbarkeit: https://univ-eiffel.hal.science/hal-05082031
-
12
Autoren: et al.
Schlagwörter: Microplastics, Respirable air, Morphological profile, Pollution, DSC, Pyr-GC/MS
Dateibeschreibung: 15 páginas; application/pdf
Relation: Molecules; 1. Chen, G.; Feng, Q.; Wang, J. Mini-Review of Microplastics in the Atmosphere and Their Risks to Humans. Sci. Total Environ. 2020, 703, 135504. [CrossRef]; 2. Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [CrossRef] [PubMed]; 3. Eerkes-Medrano, D.; Leslie, H.A.; Quinn, B. Microplastics in Drinking Water: A Review and Assessment. Curr. Opin. Environ. Sci. Health 2019, 7, 69–75. [CrossRef]; 4. Castelvetro, V.; Corti, A.; Biale, G.; Ceccarini, A.; Degano, I.; La Nasa, J.; Lomonaco, T.; Manariti, A.; Manco, E.; Modugno, F.; et al. New Methodologies for the Detection, Identification, and Quantification of Microplastics and Their Environmental Degradation by-Products. Environ. Sci. Pollut. Res. 2021, 28, 46764–46780. [CrossRef] [PubMed]; 5. Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [CrossRef]; 6. Yuan, Z.; Nag, R.; Cummins, E. Human Health Concerns Regarding Microplastics in the Aquatic Environment—From Marine to Food Systems. Sci. Total Environ. 2022, 823, 153730. [CrossRef]; 7. Jiang, B.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health Impacts of Environmental Contamination of Micro- and Nanoplastics: A Review. Environ. Health Prev. Med. 2020, 25, 29. [CrossRef]; 8. Kannan, K.; Vimalkumar, K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front. Endocrinol. 2021, 12, 724989. [CrossRef]; 9. Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [CrossRef]; 11. Kumar, R.; Sharma, P.; Verma, A.; Jha, P.K.; Singh, P.; Gupta, P.K.; Chandra, R.; Prasad, P.V.V. Effect of Physical Characteristics and Hydrodynamic Conditions on Transport and Deposition of Microplastics in Riverine Ecosystem. Water 2021, 13, 2710. [CrossRef]; 12. Chubarenko, I.; Bagaev, A.; Zobkov, M.; Esiukova, E. On Some Physical and Dynamical Properties of Microplastic Particles in Marine Environment. Mar. Pollut. Bull. 2016, 108, 105–112. [CrossRef] [PubMed]; 13. Chubarenko, I.; Esiukova, E.; Bagaev, A.; Isachenko, I.; Demchenko, N.; Zobkov, M.; Efimova, I.; Bagaeva, M.; Khatmullina, L. Chapter 6—Behavior of Microplastics in Coastal Zones. In Microplastic Contamination in Aquatic Environments; Zeng, E.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 175–223. ISBN 978-0-12-813747-5.; 14. Sitti, M. Physical Intelligence as a New Paradigm. Extreme Mech. Lett. 2021, 46, 101340. [CrossRef] [PubMed]; 15. Rocha-Santos, T.; Duarte, A.C. Characterization and Analysis of Microplastics; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-444-63899-1.; 16. Cowger, W.; Gray, A.; Christiansen, S.H.; De Frond, H.; Deshpande, A.D.; Hemabessiere, L.; Lee, E.; Mill, L.; Munno, K.; Sarau, G.; et al. Critical Review of Processing and Classification Techniques for Images and Spectra in Microplastic Research. Appl. Spectrosc. 2020, 74, 989–1010. [CrossRef]; 17. Dierkes, G.; Lauschke, T.; Földi, C. Analytical Methods for Plastic (Microplastic) Determination in Environmental Samples. In Plastics in the Aquatic Environment–Part I: Current Status and Challenges; Stock, F., Reifferscheid, G., Brennholt, N., Kostianaia, E., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2022; pp. 43–67. ISBN 978-3-030-84118-8.; 18. Shim, W.J.; Hong, S.H.; Eo, S.E. Identification Methods in Microplastic Analysis: A Review. Anal. Methods 2017, 9, 1384–1391. [CrossRef]; 19. Chen, G.; Fu, Z.; Yang, H.; Wang, J. An Overview of Analytical Methods for Detecting Microplastics in the Atmosphere. TrAC Trends Anal. Chem. 2020, 130, 115981. [CrossRef]; 21. Hernández, J.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [CrossRef]; 22. Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef]; 23. Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [CrossRef]; 24. Hernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [CrossRef]; 25. Hernández-Fernández, J. Quantification of Oxygenates, Sulphides, Thiols and Permanent Gases in Propylene. A Multiple Linear Regression Model to Predict the Loss of Efficiency in Polypropylene Production on an Industrial Scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef] [PubMed]; 26. Hernández-Fernández, J. Quantification of Arsine and Phosphine in Industrial Atmospheric Emissions in Spain and Colombia. Implementation of Modified Zeolites to Reduce the Environmental Impact of Emissions. Atmos. Pollut. Res. 2021, 12, 167–176. [CrossRef]; 27. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027. [CrossRef]; 28. Joaquin, H.-F.; Juan, L. Quantification of Poisons for Ziegler Natta Catalysts and Effects on the Production of Polypropylene by Gas Chromatographic with Simultaneous Detection: Pulsed Discharge Helium Ionization, Mass Spectrometry and Flame Ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef] [PubMed]; 29. Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]; 30. Hernandez-Fernandez, J.; Rayon, E.; Lopez, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]; 31. Chacon, H.; Cano, H.; Hernández Fernández, J.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [CrossRef]; 32. Pavon, C.; Aldas, M.; Hernandez-Fernandez, J.; Lopez-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2021, 139, e51734. [CrossRef]; 33. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [CrossRef]; 34. Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]; 35. Hernández-Fernández, J.; Castro-Suarez, J.; Toloza, C. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [CrossRef] [PubMed]; 36. Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148. [CrossRef] [PubMed]; 37. Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [CrossRef]; 38. Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [CrossRef]; 39. Cui, J.; Chen, C.; Gan, Q.; Wang, T.; Li, W.; Zeng, W.; Xu, X.; Chen, G.; Wang, L.; Lu, L.; et al. Indoor microplastics and bacteria in the atmospheric fallout in urban homes. Sci. Total Environ. 2022, 852, 158233. [CrossRef] [PubMed]; 40. Abràmoff, M.D. Image Processing with ImageJ. Biophotonics Int. 2004, 11, 36–42.; 41. Igathinathane, C.; Pordesimo, L.O.; Batchelor, W.D. Major Orthogonal Dimensions Measurement of Food Grains by Machine Vision Using ImageJ. Food Res. Int. 2009, 42, 76–84. [CrossRef]; 42. Igathinathane, C.; Pordesimo, L.O.; Columbus, E.P.; Batchelor, W.D.; Methuku, S.R. Shape Identification and Particles Size Distribution from Basic Shape Parameters Using ImageJ. Comput. Electron. Agric. 2008, 63, 168–182. [CrossRef]; 43. Stolze, N.; Bader, C.; Henning, C.; Mastin, J.; Holmes, A.E.; Sutlief, A.L. Automated Image Analysis with ImageJ of Yeast Colony Forming Units from Cannabis Flowers. J. Microbiol. Methods 2019, 164, 105681. [CrossRef]; 44. Guida, G.; Viggiani, G.M.B.; Casini, F. Multi-Scale Morphological Descriptors from the Fractal Analysis of Particle Contour. Acta Geotech. 2020, 15, 1067–1080. [CrossRef]; 45. dos Reis, E.; Canales, B.G.; de Andrade, M.F.F. Assessment of Mathematical Expressions for Morphological Parameters of Solid Particles Based on Common Geometric Shapes. Powder Technol. 2020, 370, 215–225. [CrossRef]; 15; 28; https://hdl.handle.net/11323/10406; Corporación Universidad de la Costa; https://repositorio.cuc.edu.co/
-
13
Autoren: et al.
Quelle: Environmental Science & Technology. 52:5634-5643
Schlagwörter: Geologic Sediments, Marine litter, microplastics, oxidized polyethylene, Pyr-GC/MS, Italy, 13. Climate action, Spectroscopy, Fourier Transform Infrared, 0211 other engineering and technologies, 14. Life underwater, 02 engineering and technology, Plastics, 01 natural sciences, Water Pollutants, Chemical, Environmental Monitoring, 0105 earth and related environmental sciences
Dateibeschreibung: application/pdf
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/29681150
https://pubag.nal.usda.gov/catalog/6000122
https://www.cabdirect.org/cabdirect/abstract/20193139039
https://www.ncbi.nlm.nih.gov/pubmed/29681150
https://arpi.unipi.it/handle/11568/922366
https://pubs.acs.org/doi/10.1021/acs.est.8b01487
http://pubs.acs.org/doi/abs/10.1021/acs.est.8b01487
https://hdl.handle.net/11568/922366
https://pubs.acs.org/doi/10.1021/acs.est.8b01487
https://doi.org/10.1021/acs.est.8b01487 -
14
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: microplastic, marine sediment, pet, nylon 6, nylon 6,6, reversed-phase HPLC, polyolefin, polystyrene, Pyr-GC/MS, polymer degradation
Dateibeschreibung: STAMPA
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000628421300001; volume:13; issue:5; numberofpages:18; journal:POLYMERS; https://hdl.handle.net/11568/1087970
-
15
Autoren:
Weitere Verfasser:
Schlagwörter: Pyr-GC/MS, Microplastics, Microplastiques, Sediment, Développement analytique, [SDE.IE] Environmental Sciences/Environmental Engineering, Analytical development, Pyrolyse-GC/MS, Sédiment
Dateibeschreibung: application/pdf
Zugangs-URL: https://theses.hal.science/tel-05013500v1
-
16
Autoren: Muñoz-Pérez, Juan-Pablo
Schlagwörter: Veterinary sciences, microplastics, Machalilla, Chelonia mydas, Ecology, Amblyrhynchus cristatus, Pollution and contamination, FOS: Veterinary sciences, MPAs, Galápagos, macroplastics, marine reptiles, FT-IR, Pyr-GC/MS, Xenocysa jessiae, health-metrics, marine fish, FOS: Biological sciences, Ecuador, plastic-pollution
-
17
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Microplastiques, Développement analytique, Pyrolyse-GC/MS, Sédiment, Microplastics, Analytical development, Pyr-GC/MS, Sediment
Verfügbarkeit: http://www.theses.fr/2024PA120009/document
-
18
Autoren: et al.
Weitere Verfasser: et al.
Quelle: https://theses.hal.science/tel-05013500 ; Ingénierie de l'environnement. Université Paris-Est Créteil Val-de-Marne - Paris 12, 2024. Français. ⟨NNT : 2024PA120009⟩.
Schlagwörter: Microplastics, Analytical development, Pyr-GC/MS, Sediment, Microplastiques, Développement analytique, Pyrolyse-GC/MS, Sédiment, [SDE.IE]Environmental Sciences/Environmental Engineering
Relation: NNT: 2024PA120009
-
19
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Water Research
Schlagwörter: sewage sludge, Sewage, biosolids, Australia, 0211 other engineering and technologies, 02 engineering and technology, 01 natural sciences, quantification, WWTPs, United Kingdom, 6. Clean water, Pyr-GC/MS, plastic production, Biosolids, 13. Climate action, Quantification, Plastic production, plastics, Sewage sludge, Plastics, 0105 earth and related environmental sciences
Dateibeschreibung: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/34182349
https://dare.uva.nl/personal/pure/en/publications/plastics-in-biosolids-from-1950-to-2016-a-function-of-global-plastic-production-and-consumption(9cc3e902-af4a-4500-a1ce-97e992b932c9).html
https://hdl.handle.net/11245.1/9cc3e902-af4a-4500-a1ce-97e992b932c9
https://doi.org/10.1016/j.watres.2021.117367
https://pubmed.ncbi.nlm.nih.gov/34182349/
https://espace.library.uq.edu.au/view/UQ:cb022bd
https://europepmc.org/article/MED/34182349
https://repository.rothamsted.ac.uk/item/98592/plastics-in-biosolids-from-1950-to-2016-a-function-of-global-plastic-production-and-consumption
https://www.sciencedirect.com/science/article/pii/S0043135421005650
https://www.ncbi.nlm.nih.gov/pubmed/34182349
https://hdl.handle.net/11541.2/147910
https://hdl.handle.net/11250/3005097 -
20
Full Text Finder
Nájsť tento článok vo Web of Science