Search Results - "Process synthesis and design"

Refine Results
  1. 1
  2. 2
  3. 3

    Subject Terms: concentrating solar power, cycling, shale gas condensate, time-delay, multi-objective optimisation, refuse derived fuel, work and heat integration, H2O-LiBr working pair, power plants, building blocks, polymer electrolyte membrane fuel cell (PEMFC), sustainable process design, multi-scale systems engineering, FCMP, absorption refrigeration, offshore wind, energy systems, energy efficiency, compressibility factor, compressor modeling, hybrid Life Cycle Assessment, time-varying operation, simulation, post-combustion CO2 capture, PTC, palladium membrane hydrogen separation, demand response, geothermal energy, hybrid system, TA1-2040, hybrid solar, energy, solar energy, fuel cost minimization problem, linearization, life cycle analysis, process control, organic Rankine cycle, operations, multi-loop control, CSP, thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology, kriging, process synthesis and design, smith predictor, auto thermal reformer, CST, parabolic trough, naphtha recovery unit, optimal battery operation, supervisory control, modeling, DMR liquefaction processes, shale gas condensate-to-heavier liquids, Dieng, multiphase equilibrium, nonlinear mathematical programming, battery degradation, cost optimization, piecewise-linear function generation, mixture ratio, energy management, technoeconomic analysis, solar PV, supercritical CO2, R123, optimal control, modeling and simulation, supercritical carbon dioxide, dynamic modeling, dynamic optimization, diagnostics, load-following, oil and gas, methyl-oleate, natural gas transportation, waste to energy, circulating fluidized bed boiler, gas path analysis, WHENS, analysis by synthesis, concentrating solar thermal, process simulation, industrial process heat, recompression cycle, RK-ASPEN, superstructure, supercritical pulverized coal (SCPC), exergy loss, optimization, isentropic exponent, MINLP, second law efficiency, biodiesel, modelling, desalination, process systems engineering, nonsmooth modeling, friction factor, T1-995, double-effect system, dynamic simulation, process integration, Organic Rankine Cycle (ORC), micro gas turbine, process design, top-down models, energy storage, thermal storage, statistical model, cogeneration, wind power, binary cycle, efficiency, Indonesia, R245fa, combined cycle, energy economics

    File Description: application/octet-stream

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Source: Frauzem, R, Fjellerup, K & Gani, R 2015, ' A Methodology for a Sustainable CO 2 Capture and Utilization Network ' 2015 AIChE Annual Meeting, Salt Lake City, United States, 08/11/2015-13/11/2015

    File Description: application/vnd.openxmlformats-officedocument.wordprocessingml.document

  11. 11
  12. 12
  13. 13

    Source: Al , R , Behera , C R , Gernaey , K V & Sin , G 2019 , Towards development of a decision support tool for conceptual design of wastewater treatment plants using stochastic simulation optimization . in K Anton , E Zondervan , R Lakerveld & L Özkan (eds) , Proceedings of the 29th European Symposium on Computer Aided Process Engineering . Elsevier , Computer Aided Chemical Engineering , vol. 46 , pp. 325-330 , 29th European Symposium on Computer Aided Process Engineering , Eindhoven , Netherlands , 16/06/2019 . https://doi.org/10.1016/B978-0-12-818634-3.50055-2

    Relation: urn:ISBN:9780128186343

  14. 14

    Source: Perederic , O A , Appel , S , Sarup , B , Woodley , J M , Kontogeorgis , G M & Gani , R 2018 , Design and Analysis of Edible Oil Processes Containing Lipids . in A Friedl , J J. Klemeš , S Radl , P S. Varbanov & T Wallek (eds) , Proceedings of the 28th European Symposium on Computer Aided Process Engineering – ESCAPE 28 . vol. 43 , Elsevier , Computer Aided Chemical Engineering , pp. 737-742 , 28th European Symposium on Computer Aided Process Engineering (Escape 28) , Graz , Austria ....

  15. 15

    Source: Quaglia , A , Sarup , B , Sin , G & Gani , R 2013 , Design of a Generic and Flexible Data Structure for Efficient Formulation of Large Scale Network Problems . in Proceedings of the 23rd European Symposium on Computer Aided Process Engineering – ESCAPE 23 . Elsevier , pp. 661-666 , 23rd European Symposium on Computer Aided Process Engineering , Lappeenranta , Finland , 09/06/2013 .

  16. 16

    Relation: 參考文獻 【1】 Adhikari S., S. Fernando, S.R. Gwaltney, S.D. Filip To, R.M. Bricka, P. H. Steele, A. Haryanto, “A thermodynamic analysis of hydrogen production by steam reforming of glycerol”, Int. J. Hydrogen Energy, 32, 2875 (2007) . 【2】 Packer, J., Chemical Processes in New Zealand, 2nd ed. VII-Energy-D-Methanol, New Zealand Institute of Chemistry, New Zealand, 1-19 (2005). 【3】 AspenPlus, ASPEN PLUS User’s Guide, Version 7.3, Aspen Tech., Boston, Ma, U.S.A. (2011). 【4】 Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz and D. Bhattacharyya, “Analysis, Synthesis, and Design of Chemical Processes” 4th ed., Prentice Hall, New Jersey, U.S.A. (2012). 【5】 Linnhoff, B., Pinch Analysis - A State-of-the-Art Overview, Trans. IChemE., Part A, 71, 503 (1993). 【6】 Seider, W. D., J. D. Seader, D. R. Lewin, and S. Widagdo, Product and Process Design Principles: Synthesis, Analysis and Evaluation, 3rd ed, John Wiley & Sons Inc., NJ, U.S.A. (2010). 【7】 Smith, R., Chemical Process Design and Integration, John Wiley & Sons, Ltd., West Sussex, England (2005). 【8】 Peters, M. S., K. D. Timmerhaus, and R. E. West, Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill Inc., New York, U. S. A. (2004). 【9】 王銘忠,化工製程模擬之熱力學模式,化工,第58卷,第3期,第78-82頁 (2011)。 【10】 Aspen Plus, Physical Property Methods and Models Reference Manual, Aspen Tech., Boston, MA, U.S.A. (2006). 【11】 Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, Synthesis, and Design of Chemical Processes, p.517-p.565 & p937-p943 3rd ed., Prentice Hall, New Jersey, U. S.A. (2003). 【12】 Linnhoff, B., Pinch Analysis - A State-of-the-Art Overview, Trans. IChemE., Part A, 71, 503-522 (1993). 【13】 Hohmann, E. C., Optimum Networks for Heat Exchange, Ph.D. Thesis, University of Southern California, U.S.A. (1971). 【14】 范哲維,羰化反應製造醋酸酐之程序合成與設計,碩士論文,淡江大學,臺北,(2012)。 【15】 Java Applet JSTOICH, http://www.Chemical-stoichiometry.net/jstoich.htm。 【16】 Zaidi, H. A. and K. K. Pant, Catalytic conversion of Methanol to Gasoline Range Hydrocarbons, Catal. Today, 96, 155 (2004). 【17】 Zaidi, H. A. and K. K. Pant, Transformation of Methanol to Gasoline Range Hydrocarbons using copper oxide impregnated HZSM-5 Catalysts, Korean J. Chem. Eng. 22, 353 (2005). 【18】 Bjorgen, M., S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga and U. Olsbye,. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species, J.Catal., 249, 95 (2007). 【19】 游亞文,生質汽油之製程設計與整合,碩士論文,淡江大學,臺北 (2012)。 【20】 M., I.E. Grossmann, CACHE Process Design Case Studies, Department of Chemical Engineering Carnegie-Mellon University Pittsburgh, Pennsylvania. 【21】 曾益民,生質酒精汽油之發展,永續產業發展月刊,第35期,第22-23頁 (2007)。; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102504

  17. 17
  18. 18

    Relation: 【1】陳文恆、郭家倫、黃文松、王嘉寶,纖維酒精技術之發展,農業生技產業季刊,第9期,第62-69頁 (2007)。 【2】陳曉菁,釀造醋之製造,行政院農業委員會臺東區農業改良場,臺東市,第1-4頁 (2008)。 【3】陳建孝、林畢修平,纖維酒精製程簡介與未來展望,永續產業發展雙月刊,第35期,第6-15頁 (2007)。 【4】Amutha, R. and P. Gunasekaran, “Production of Ethanol from Liquefied Cassava Starch using Co-Immobilized Cells of Zymomonas Mobilis and Saccharomyces Diastaticus,” J. Biosci. Bioeng., 92, 560-564 (2001). 【5】林天元,變壓蒸餾塔之原理與設計,化工技術,第14卷,第7期,第96-104頁 (2006)。 【6】Jeong, J. S., H. Jeon, K. M. Ko, B. Chung and G. W. Choi, “Production of Anhydrous Ethanol using various PSA (Pressure Swing Adsorption) Processes in Pilot Plant,” Renewable Energy, 42, 41-45 (2012). 【7】林承澤,工業酒精與生質酒精之製造暨其純化:化工程序合成與設計,碩士論文,淡江大學,臺北 (2010)。 【8】Abu-Elshah, S. I. and W. L. Luyben, “Design and Control of a Two-Column Azeotropic Distillation System,” Ind. Eng. Chem. Process Des. Dev., 24, 132-140 (1985). 【9】王大銘,滲透蒸發技術之發展,國立台灣大學「台大工程」學刊,第84期,第119-127頁 (2002)。 【10】Huang, R. Y. M., “Pervaporation Membrane Separation Processes, Elsevier, ” New York, 391-431 (1991). 【11】Smith, R., “Chemical Process Design and Integration,” John Wiley & Sons Ltd., West Sussex, U.K. 255-256 (2005). 【12】AspenPlus, ASPEN PLUS User’s Guide, Version 7.3, Aspen Tech., Boston, Ma, U.S.A. (2011). 【13】Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz and D. Bhattacharyya, “Analysis, Synthesis, and Design of Chemical Processes,” 4th ed., Prentice Hall, New Jersey, U.S.A. (2012). 【14】Linnhoff, B., “Pinch Analysis - A State-of-the-Art Overview,” Trans. IChemE., Part A, 71, 503-522 (1993). 【15】SuperTarget, SUPERTARGET User’s Guide, Linnhoff March Ltd., Cheshire, U.K. (2010). 【16】Seider, W. D., J. D. Seader, D. R. Lewin, and S. Widagdo, “Product and Process Design Principles Synehesis,” Analysis and Evaluation, 3rd ed., John Wiley & Sons. Inc., Hoboken, N. J. (2010). 【17】Smith, R., “Chemical Process Design and Integration,” 2nd ed., John Wiley & Sons Ltd., West Sussex, U. K. (2005). 【18】王銘忠,化工製程模擬之熱力學模式,化工,第58卷,第3期,第70-84頁 (2011)。 【19】Aspen Plus, Physical Property Methods and Models Reference Manual, Aspen Tech., Boston, MA, U.S.A. (2006). 【20】Hohmann, E. C., “Optimum Networks for Heat Exchange,” Ph. D. Thesis, University of Southern California, U. S. A. (1971). 【21】Linnhoff, B., and J. R. Flower, “Synthesis of Heat Exchanger Networks - 1 : Systematic Generation of Energy Optimal Networks,” AIChE J., 24, 633-642 (1978). 【22】Ahmad, S., B. Linnhoff, and R. Smith, “Cost Optimum Heat Exchanger Networks - 2 : Targets and Design for Detailed Capital Cost Models,” Comput. Chem. Eng., 14, 751-767 (1990). 【23】丘應模,高經濟價值作物的樹薯,今日經濟,第209期,第46-51頁 (1990)。 【24】邱亞伯,樹薯之物理化學特性及應用,博士論文,國立屏東科技大學,屏東 (2004)。 【25】Luyben, W. L., “Control of a Multiunit Heterogeneous Azeotropic Distillation Process,” AIChE J., 52, 623-637 (2006). 【26】Luyben, W. L., “Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope,” Ind. Eng. Chem. Res., 48, 3484-3495, (2009). 【27】Sander, U., P. Soukup, “Design and operation of a pervaporation Plant for ethanol dehydration,” J. Membr. Sci., 36, 463-475 (1988). 【28】曾益民,生質酒精汽油之發展,永續產業發展月刊,第35期,第22-23頁 (2007)。; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/94377

  19. 19
  20. 20

    Relation: 參考文獻 【1】 陳維新、李灝銘,生質物前處理與氣化技術,化工,第五十九卷,第一期,第3-13頁 (2012)。 【2】 http://cnfbiofuel.com/index.html,引用日期 (30/06/2012)。 【3】 郭立峰、潘冠綸、張木彬,生質汽油程序硫化物氣體淨化技術,化工,第五十九卷,第一期,第14-23頁 (2012)。 【4】 ASPEN PLUS User’s Guide: Version 7.2, Aspen Tech., Boston, Ma, U.S.A., (2010). 【5】 Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, Synthesis, and Design of Chemical Processes, 3rd ed., Prentice Hall: New Jersey, U. S. A. (2009). 【6】 Linnhoff, B., Pinch Analysis - A State-of-the-ArtOverview, Trans. IChemE., Part A, 71, 503-522 (1993). 【7】 SUPERTARGET, User’s Guide, Linnhoff March Ltd., Cheshire, U.K. (2010). 【8】 Seider, W. D., J. D. Seader, D. R. Lewin, and S. Widagdo, Product and Process Design Principles Synehesis, Analysis and Evaluation, 3rd ed., John Wiley & Sons. Inc., Hoboken, N. J. (2010). 【9】 Smith, R., Chemical Process Design and Integration, Mc Graw-Hill (2005). 【10】 王銘忠,化工製程模擬之熱力學模式,化工,第58卷,第3期,第70-84頁 (2011)。 【11】 Hohmann, E. C., Optimum Networks for Heat Exchange, Ph.D. Thesis, University of Southern California, U.S.A. (1971). 【12】 Linnhoff, B., and J. R. Flower, Synthesis of Heat Exchanger Networks – 1: Systematic Generation of Energy Optimal Networks, AIChE J., 24, 633-642 (1978). 【13】 Ahmad, S., B. Linnhoff, and R. Smith, Cost Optimum Heat Exchanger Networks – 2: Targets and Design for Detailed Capital Cost Models, Comput. Chem. Eng., 14, 751-767 (1990). 【14】 經濟部,2010年能源產業技術白皮書,民國99年4月 【15】 Nikoo, M. B. and Mahinpey, N., Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS, Biomass Bioenergy, 32, 1245-1254 (2008). 【16】 Smith, R., Chemical Process Design and Integration, John Wiley & Sons Ltd., West Sussex, U.K. (2005). 【17】 Cutlip, M. B., and M. Shacham, Problem Solving in Chemical and Biochemical Engineering with PolyMath, Excel and Matlab 2nd, Pearson Education Inc., Ma, U.S.A. (2008) 【18】 謝政廷、李灝銘,生質汽油產製技術,化工,第五十九卷,第一期,第35-41頁 (2012)。 【19】 Packer, J., Chemical Processes in New Zealand, second ed., VII-Energy-D-Methanol, p.1-19, New Zealand Institute of Chemistry, New Zealand (2005). 【20】 Zaidi, H. A. and K. K. Pant, Catalytic conversion of Methanol to Gasoline Range Hydrocarbons, Catalysis Today, 96 (2004) 155-160 【21】 Zaidi, H. A. and K. K. Pant, Transformation of Methanol to Gasoline Range Hydrocarbons using copper oxide impregnated HZSM-5 Catalysts, Korean J. Chem. Engg. 22, 3, 353-357 (2005). 【22】 Bjorgen, M., S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga and U. Olsbye,. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species, Journal of Catalysis, 249, 2, 95-207 (2007). 【23】 Chang, C. D., J. C. W. Kuo, W. H. Lang, S. M. Jacob, J. J. Wise, and A. J. Silvestri, Process Studies on the Conversion of Methanol to Gasoline, Ind. Eng. Chem. Process Des. Dev., 17, 255 (1978). 【24】 Lee, S., M. Gogate, and C. J. Kulik, Methanol-to-Gasoline vs. DME-to-Gasoline. II. Process Comparison and Analysis, Fuel Sci. and Technol. Int., 13 (8), 1039, (1995). 【25】 曾益民,生質酒精汽油之發展,永續產業發展月刊,科學月刊,第475期,第212-215頁。; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/87914