Suchergebnisse - "Physics-Informed Neural Networks (PINNs)"
-
1
Autoren: et al.
Quelle: Mathematics and Computers in Simulation. 230:80-93
Schlagwörter: physics-informed neural networks (PINNs), Groundwater flow, Physics-Informed Neural Networks (PINNs), Neural network optimization, Flows in porous media, filtration, seepage, neural network optimization, groundwater flow, PDEs in connection with fluid mechanics, Artificial neural networks and deep learning
Dateibeschreibung: application/xml; application/pdf
-
2
Autoren:
Quelle: Challenges and Issues of Modern Science (2025)
Challenges and Issues of Modern ScienceSchlagwörter: літальні апарати, аерокосмічна інженерія, Aerospace vehicles, машинне навчання, математичне моделювання, фізично-інформовані нейронні мережі (PINNs), mathematical simulation, TK1-9971, aerospace design, Environmental sciences, Machine Learning, Aerospace engineering, machine learning, aerospace engineering, Machine learning, аерокосмічне проєктування, GE1-350, Electrical engineering. Electronics. Nuclear engineering, Physics-Informed Neural Networks (PINNs), flight vehicles
Dateibeschreibung: application/pdf
-
3
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-18 (2025)
Schlagwörter: Electro-magneto-hydrodynamics (EMHD), Physics-informed neural networks (PINNs), Heat transfer enhancement, Hybrid intelligent modeling, Computational fluid dynamics (CFD), Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
4
Autoren: et al.
Quelle: Electronic Research Archive, Vol 33, Iss 2, Pp 890-906 (2025)
-
5
Autoren:
Quelle: Meitian dizhi yu kantan, Vol 53, Iss 9, Pp 182-190 (2025)
Schlagwörter: physics-informed neural networks (pinns), helmholtz equation, forward modeling, collocation point, adaptive distribution, Geology, QE1-996.5, Mining engineering. Metallurgy, TN1-997
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1001-1986
-
6
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-23 (2025)
Schlagwörter: Numerical modeling, Neural network optimization, Solar panel efficiency, Physics-informed neural networks (PINNs), Reinforcement learning, Edge AI, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
7
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-14 (2025)
Schlagwörter: Parameter inversion, Physics-informed neural networks(PINNs), Damping vibration system, GIS fault diagnosis, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
8
Autoren: Melih Agraz
Quelle: Volume: 25, Issue: 4530-541
Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and EngineeringSchlagwörter: Uygulamalı Matematik (Diğer), 0103 physical sciences, Applied Mathematics (Other), Physics-Informed Neural Networks (PINNs), Differential Equations, R-programming language, Burgers' Equation, 01 natural sciences
Dateibeschreibung: application/pdf
-
9
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 71:1377-1388
Schlagwörter: [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Heart Ventricles, Computer Vision and Pattern Recognition (cs.CV), [INFO.INFO-IM] Computer Science [cs]/Medical Imaging, Computer Science - Computer Vision and Pattern Recognition, [SPI.MECA.MEFL] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph], [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph], [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], Machine Learning (cs.LG), Physics-informed neural networks (PINNs), [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG], [SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system, Ultrasound, [INFO.INFO-IM]Computer Science [cs]/Medical Imaging, Image Processing, Computer-Assisted, FOS: Electrical engineering, electronic engineering, information engineering, Vector flow imaging, Humans, Image and Video Processing (eess.IV), Physics-guided neural networks (PGNNs), [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], Electrical Engineering and Systems Science - Image and Video Processing, [SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system, Echocardiography, Doppler, Color, Artificial Intelligence (cs.AI), Echocardiography, Deep learning (DL), Color Doppler, Neural Networks, Computer, Cardiac flow, Algorithms, Blood Flow Velocity
Dateibeschreibung: application/pdf
-
10
Autoren:
Schlagwörter: fluid flow reconstruction, SOAP optimizer, Lagrangian Particle Tracking (LPT), Physics-Informed Neural Networks (PINNs)
Zugangs-URL: https://elib.dlr.de/215584/
-
11
Autoren:
Quelle: Results in Physics, Vol 79, Iss , Pp 108512- (2025)
Schlagwörter: Zakharov-Kuznetsov-Burgers (ZKB) equation, Physics-informed neural networks (PINNs), Lump wave solutions, Soliton interactions, Plasma wave dynamics, Nonlinear partial differential equations, Physics, QC1-999
Dateibeschreibung: electronic resource
-
12
Autoren: Vahid Mirzaei Mahmoud Abadi
Quelle: Physics Open, Vol 25, Iss , Pp 100343- (2025)
Schlagwörter: Neutron-nucleus scattering, Physics-informed neural networks (PINNs), Woods–saxon potential, Partial wave analysis, Physics, QC1-999
Dateibeschreibung: electronic resource
-
13
Autoren:
Quelle: AIMS Mathematics, Vol 10, Iss 6, Pp 13721-13740 (2025)
Schlagwörter: physics-informed neural networks (pinns), $ \beta- $conformable fractional differential equations, nr-pinn, deep learning, Mathematics, QA1-939
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
14
Autoren:
Quelle: Journal of Rock Mechanics and Geotechnical Engineering, Vol 16, Iss 9, Pp 3812-3840 (2024)
-
15
Autoren: Researcher
-
16
Autoren:
Quelle: Computer Methods in Applied Mechanics and Engineering, 439
Schlagwörter: Machine Learning, Physics informed neural networks (PINNs), Multi objective optimization, Partial differential equations, Scientific machine learning, Helmholtz equation, Burgers equation, PINNacle, Loss balancing, Multi-objective optimisation
Dateibeschreibung: application/application/pdf
Zugangs-URL: http://hdl.handle.net/20.500.11850/727362
-
17
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Inverse Problems, Shallow-Water Equations, Parameter Identification, [MATH] Mathematics [math], Physics-Informed Neural Networks (PINNs), Data Assimilation
Zugangs-URL: https://hal.science/hal-04963071v1
-
18
Autoren: et al.
Quelle: IEEE Transactions on Neural Networks and Learning Systems
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Complex system, 02 engineering and technology, Numerical Analysis (math.NA), Timoshenko beam, 01 natural sciences, 0201 civil engineering, Machine Learning (cs.LG), physics-informed neural networks (PINNs), double-beam system, Euler–Bernoulli beam, FOS: Mathematics, Mathematics - Numerical Analysis, 0101 mathematics
-
19
Autoren:
Quelle: Computational Mechanics. 74:1229-1259
Schlagwörter: physics-informed neural networks (PINNs), Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, multiphysics, 0203 mechanical engineering, Mechanics of deformable solids, transient thermoelasticity, thermo-mechanical analysis, temporal convolutional networks (TCN), 02 engineering and technology, 0101 mathematics, Computer Science - Computational Engineering, Finance, and Science, 01 natural sciences
Dateibeschreibung: application/xml
-
20
Autoren: et al.
Quelle: Buildings, Vol 15, Iss 21, p 3960 (2025)
Schlagwörter: structural dynamics, single-degree-of-freedom (SDOF), Extended Kalman Filter (EKF), Physics-Informed Neural Networks (PINNs), Eurocode 8, optimization algorithms, Building construction, TH1-9745
Dateibeschreibung: electronic resource
Full Text Finder
Nájsť tento článok vo Web of Science