Suchergebnisse - "Phosphorylation drug effects"

  1. 1

    Quelle: Fraguas Bringas, C, Ahangar, M S, Cuenco, J, Liu, H, Addinsall, A B, Lindahl, M, Ovens, A J, Febbraio, M A, Foretz, M, Göransson, O, Scott, J W, Zeqiraj, E & Sakamoto, K 2025, ' Mechanism and cellular actions of the potent AMPK inhibitor BAY-3827 ', Science Advances, vol. 11, no. 34, pp. eadx2434 . https://doi.org/10.1126/sciadv.adx2434

    Dateibeschreibung: application/pdf

  2. 2
  3. 3
  4. 4

    Quelle: Cell Death Dis
    Cell Death and Disease, Vol 16, Iss 1, Pp 1-11 (2025)

    Dateibeschreibung: application/pdf

  5. 5
  6. 6
  7. 7
  8. 8

    Autoren: Liu, H Li, H Bai, X et al.

    Quelle: J Cell Mol Med
    Liu, H, Li, H, Bai, X, Zhao, Y, Cai, Y, Pan, H, Guo, L, Liu, K, Liu, Q, Huang, X, Zampetaki, A, Margariti, A, Zeng, L & Cai, T 2024, 'Histone deacetylase 7-derived 7-amino acid peptide increases skin wound healing via regulating epidermal fibroblast proliferation and migration', Journal of Cellular and Molecular Medicine, vol. 28, no. 22, e70209. https://doi.org/10.1111/jcmm.70209

    Dateibeschreibung: application/pdf

  9. 9
  10. 10

    Autoren: Zhang, M. Barroso, E. Peña, L. et al.

    Quelle: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 179, pp. 117303

    Dateibeschreibung: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/pmid/39153437; info:eu-repo/semantics/altIdentifier/eissn/1950-6007; info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_1C8038E5F6C16; https://serval.unil.ch/notice/serval:BIB_1C8038E5F6C1; https://serval.unil.ch/resource/serval:BIB_1C8038E5F6C1.P001/REF.pdf

  11. 11
  12. 12

    Weitere Verfasser: Ju Yeong Kim Hun Hee Park Tai Soon Yong et al.

    Quelle: Biochemical and Biophysical Research Communications. 581:74-80

    Schlagwörter: 0301 basic medicine, Osteoblasts / pathology, Culture, Proliferation, Osteoblasts / drug effects, Cell Nucleus / drug effects, MAP Kinase Signaling System / drug effects, Invasion, Cell Movement, beta Catenin / metabolism, Bone Marrow Cells / drug effects, Phosphorylation, Wnt Signaling Pathway, beta Catenin, Bone Marrow Cells / cytology, Mitogen-Activated Protein Kinase 1, Cell Movement / genetics, Diffusion Chambers, Osteosarcoma, 0303 health sciences, Tumor, Mitogen-Activated Protein Kinase 3, Protein Transport / drug effects, Cell Movement / drug effects, Osteoblasts / metabolism, Mitogen-Activated Protein Kinase 3 / genetics, 3. Good health, Gene Expression Regulation, Neoplastic, Protein Transport, Mitogen-Activated Protein Kinase 1 / genetics, Diffusion Chambers, Culture, Cell Proliferation / genetics, beta Catenin / genetics, Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors, MAP Kinase Signaling System, Primary Cell Culture, Epidermal Growth Factor / pharmacology, Bone Marrow Cells, Cell Line, 03 medical and health sciences, Cell Line, Tumor, Glycogen Synthase Kinase 3 beta / genetics, Humans, Cell Proliferation, Cell Nucleus, Neoplastic, Phosphorylation / drug effects, Glycogen Synthase Kinase 3 beta, Osteoblasts, Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors, Epidermal Growth Factor, Cell Nucleus / metabolism, Epidermal growth factor, Bone Marrow Cells / metabolism, Glycogen Synthase Kinase 3 beta / metabolism, Lithium Chloride / pharmacology, Lithium chloride, Gene Expression Regulation, Mitogen-Activated Protein Kinase 1 / metabolism, Wnt Signaling Pathway / drug effects, Cell Proliferation / drug effects, Lithium Chloride, Mitogen-Activated Protein Kinase 3 / metabolism

  13. 13

    Weitere Verfasser: Injae Shin Sunghoon Kim Hojong Yoon et al.

    Quelle: Journal of Medicinal Chemistry. 64:11934-11957

  14. 14
  15. 15

    Weitere Verfasser: Chiara Raggi Maria Letizia Taddei Elena Sacco et al.

    Quelle: Raggi, C, Taddei, M L, Sacco, E, Navari, N, Correnti, M, Piombanti, B, Pastore, M, Campani, C, Pranzini, E, Iorio, J, Lori, G, Lottini, T, Peano, C, Cibella, J, Lewinska, M, Andersen, J B, di Tommaso, L, Viganò, L, Di Maira, G, Madiai, S, Ramazzotti, M, Orlandi, I, Arcangeli, A, Chiarugi, P & Marra, F 2021, ' Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma ', Journal of Hepatology, vol. 74, no. 6, pp. 1373-1385 . https://doi.org/10.1016/j.jhep.2020.12.031

    Dateibeschreibung: application/pdf; STAMPA

  16. 16

    Autoren: Gerst F. Kemter E. Lorza-Gil E. et al.

    Quelle: Diabetologia
    Diabetologia 64, 1358–1374 (2021)

    Dateibeschreibung: application/pdf

  17. 17

    Quelle: Molecular Pharmacology. 95:222-234

    Dateibeschreibung: application/pdf

  18. 18

    Quelle: Nature Chemical Biology. 16:577-586

    Dateibeschreibung: application/pdf

  19. 19

    Quelle: Mehra, A, Guérit, S, Macrez, R, Gosselet, F, Sevin, E, Lebas, H, Maubert, E, De Vries, H E, Bardou, I, Vivien, D & Docagne, F 2020, 'Nonionotropic Action of Endothelial NMDA Receptors on Blood-Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin', Journal of Neuroscience, vol. 40, no. 8, pp. 1778-1787. https://doi.org/10.1523/JNEUROSCI.0969-19.2019

    Dateibeschreibung: application/pdf

  20. 20