Search Results - "Particle number concentration"

Refine Results
  1. 1

    Authors: Ridolfo, Sharon

    Contributors: University/Department: Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC

    Thesis Advisors: Amato, Fulvio, Querol Carceller, Xavier, Dorado Castaño, Antonio David

    Source: TDX (Tesis Doctorals en Xarxa)

    File Description: application/pdf

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Source: Bergmann, M L, Taghavi Shahri, S M, Tayebi, S, Kerckhoffs, J, Cole-Hunter, T, Hoek, G, Lim, Y H, Massling, A, Vermeulen, R, Loft, S, Andersen, Z J & Amini, H 2025, 'Spatial and temporal variation of façade-level particle number concentrations using portable monitors in Copenhagen, Denmark', Environmental Pollution, vol. 365, 125398. https://doi.org/10.1016/j.envpol.2024.125398

  9. 9

    Source: Environ Sci Technol
    Digital.CSIC. Repositorio Institucional del CSIC
    instname
    Environmental science & technology 56 (2022): 11189–11198. doi:10.1021/acs.est.1c07796
    info:cnr-pdr/source/autori:Song, Congbo; Becagli, Silvia; Beddows, David C.S.; Brean, James; Browse, Jo; Dai, Qili; Dall'Osto, Manuel; Ferracci, Valerio; Harrison, Roy M.; Harris, Neil; Li, Weijun; Jones, Anna E.; Kirchgäßner, Amélie; Kramawijaya, Agung Ghani; Kurganskiy, Alexander; Lupi, Angelo; Mazzola, Mauro; Severi, Mirko; Traversi, Rita; Shi, Zongbo/titolo:Understanding Sources and Drivers of Size-Resolved Aerosol in the High Arctic Islands of Svalbard Using a Receptor Model Coupled with Machine Learning/doi:10.1021%2Facs.est.1c07796/rivista:Environmental science & technology/anno:2022/pagina_da:11189/pagina_a:11198/intervallo_pagine:11189–11198/volume:56
    Song, C, Becagli, S, Beddows, D C S, Brean, J, Browse, J, Dai, Q, Dall'Osto, M, Ferracci, V, Harrison, R M, Harris, N, Li, W, Jones, A E, Kirchgäßner, A, Kramawijaya, A G, Kurganskiy, A, Lupi, A, Mazzola, M, Severi, M, Traversi, R & Shi, Z 2022, 'Understanding Sources and Drivers of Size-Resolved Aerosol in the High Arctic Islands of Svalbard Using a Receptor Model Coupled with Machine Learning', Environmental Science and Technology, vol. 56, no. 16, pp. 11189-11198. https://doi.org/10.1021/acs.est.1c07796

    File Description: application/pdf

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20