Výsledky vyhledávání - "Multilayer neural networks"
-
1
Autoři: a další
Zdroj: IEEE Access. 13:31630-31642
Témata: attention mechanism, Blood cell cancer, convolutional neural networks, deep learning, leukemia disease, Deep neural networks, Diagnosis, Diseases, Lung cancer, Multilayer neural networks, Oncology, Patient treatment, Personalized medicine, Acute lymphoblastic leukaemias, Attention mechanisms, Blood cells, Bone marrow, Convolutional neural network, Peripheral blood smears, Treatment plans
Popis souboru: print
-
2
Autoři:
Zdroj: Journal of engineering design (Print). 34(1):1-22
Témata: Convolution, Convolutional neural networks, Multilayer neural networks, Product development, Case-studies, Convolutional neural network, Data-driven design, Design alternatives, Design-process, Dynamic relaxation, Image regression, Modelling techniques, Simulation-driven designs, Surrogate modeling, Product design
Popis souboru: print
-
3
Autoři:
Zdroj: Dynamics of Civil Structures, Volume 2 ISBN: 9788743803805
Témata: Structural health monitoring, Damage localization, Vibration-based damage detection, Civil infrastructures, Multilayer neural networks, Backpropagation, Deep learning, 02 engineering and technology, Civil engineering structures, Damage detection, 0201 civil engineering, Learning tool, Learning methods, Damage Identification, 0202 electrical engineering, electronic engineering, information engineering, Structural dynamics, Convolutional neural networks, Machine-learning, Infrastructure health
-
4
Autoři:
Zdroj: Journal of Intelligent Manufacturing. 32(4):1173-1187
Témata: Skin Model Shapes, Variation propagation, Virtual machining, Backpropagation, Forecasting, Machining, Machining centers, Manufacture, Multilayers, Geometric characteristics, Geometrical deviations, Machining simulation, Manufacturing errors, Multi-stage machining process, Multistage manufacturing, Variation source identification, Multilayer neural networks
Popis souboru: print
-
5
Autoři:
Zdroj: 2024 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :256-262
Témata: Adversarial machine learning, Contrastive Learning, Federated learning, Multilayer neural networks, Transfer learning
Popis souboru: application/pdf
-
6
Autoři: a další
Zdroj: Zhongguo Jianchuan Yanjiu, Vol 20, Iss 1, Pp 47-57 (2025)
Témata: ships, maneuverability, maneuvering motion, gray-box modelling, multilayer neural networks, fourier transforms, onrt, Naval architecture. Shipbuilding. Marine engineering, VM1-989
Popis souboru: electronic resource
Relation: https://doaj.org/toc/1673-3185
Přístupová URL adresa: https://doaj.org/article/b633bb40e2d243338d78efa7a9a8b922
-
7
Autoři:
Zdroj: 3rd Conference on Digital Preservation and processing technology of Written Heritage, in conjunction with the 7th IEEE International Congress on Information Science and Technology (IEEE CiSt'23), Agadir-Essaouira, Morocco, 16-22/12/2023
info:cnr-pdr/source/autori:Savino P.; Tonazzini A./congresso_nome:3rd Conference on Digital Preservation and processing technology of Written Heritage, in conjunction with the 7th IEEE International Congress on Information Science and Technology (IEEE CiSt'23)/congresso_luogo:Agadir-Essaouira, Morocco/congresso_data:16-22%2F12%2F2023/anno:2023/pagina_da:/pagina_a:/intervallo_pagineTémata: Shallow multilayer neural networks, 03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, Ancient document text analysis, Recto-verso documents, 02 engineering and technology, Degraded document binarization, Optical character recognition
Popis souboru: application/pdf
Přístupová URL adresa: http://www.cnr.it/prodotto/i/490208
https://publications.cnr.it/doc/490208 -
8
Autoři: a další
Zdroj: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. :2626-2636
Témata: FOS: Computer and information sciences, Computer Science - Machine Learning, Iterative methods, Large-scales, Multilayer neural networks, Backpropagation, Quadratic programming, scalable machine learning, Model size, Machine Learning (cs.LG), Deep neural networks, Large-scale graph management, large-scale graph management, Quantisation, Oversmoothing in GNN, graph neural networks, oversmoothing in GNNs, Quantizers, Message propagation, Graph neural networks, 68T07, Scalable machine learning, Message passing, Number of layers, quantization, I.m
Přístupová URL adresa: http://arxiv.org/abs/2308.14949
-
9
Autoři:
Zdroj: Neural computing & applications
(2024). doi:10.1007/s00521-023-09354-7
info:cnr-pdr/source/autori:Savino P.; Tonazzini A./titolo:Training a shallow NN to erase ink seepage in historical manuscripts based on a degradation model/doi:10.1007%2Fs00521-023-09354-7/rivista:Neural computing & applications (Print)/anno:2024/pagina_da:/pagina_a:/intervallo_pagine:/volumeTémata: Shallow multilayer neural networks, Registration of recto-verso documents, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Degraded document binarization, Ancient manuscript virtual restoration
Popis souboru: application/pdf
-
10
Autoři: a další
Zdroj: IEEE Access, Vol 12, Pp 52352-52362 (2024)
IEEE AccessTémata: MULTILAYER NEURAL NETWORKS, ELECTRORETINOGRAM, electroretinogram, AUTISM SPECTRUM DISORDERS, gated MLP, TRANSFORMER, ASD, 03 medical and health sciences, CLASSIFICATION (OF INFORMATION), 0302 clinical medicine, GATED MLP, MULTILAYERS, NONINVASIVE MEDICAL PROCEDURES, WAVEFORM, RETINA, DEEP LEARNING, SIGNAL ANALYSIS, deep learning, RECORDING, WAVELET ANALYSIS, TK1-9971, ELECTRORETINOGRAMS, ERG, transformer, WAVELET-ANALYSIS, WAVEFORMS, Electrical engineering. Electronics. Nuclear engineering, NEURODEGENERATIVE DISEASES, MULTILAYERS PERCEPTRONS
Popis souboru: application/pdf
Přístupová URL adresa: https://doaj.org/article/44521ebdae604c5688d995fedecd9eed
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190174297&doi=10.1109/ACCESS.2024.3386638&partnerID=40&md5=b7f4e5d724077ff5dd8330efdd3fb37e
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10495056.pdf
http://elar.urfu.ru/handle/10995/141543 -
11
Autoři:
Zdroj: 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB)
2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine, CSGB 2023-ProceedingsTémata: FOS: Computer and information sciences, Computer Science - Machine Learning, J.3, HARD CONSTRAINTS, CONVOLUTION, MULTILAYER NEURAL NETWORKS, 3D MESHES, Computer Vision and Pattern Recognition (cs.CV), MEDICAL APPLICATIONS, SYMMETRY IN NEURAL NETWORK, INVERSION INVARIANT, SYMMETRY IN NEURAL NETWORKS, Computer Science - Computer Vision and Pattern Recognition, WEIGHT SYMMETRY, ROTATION INVARIANT, Machine Learning (cs.LG), FOS: Electrical engineering, electronic engineering, information engineering, MESH SEGMENTATION, 65D18, 68U10, MESH GENERATION, I.4.6, Image and Video Processing (eess.IV), Electrical Engineering and Systems Science - Image and Video Processing, CONVOLUTIONAL NEURAL NETWORKS, 3D MESH SEGMENTATION, BIOMEDICAL SEGMENTATION, HEART, NEURAL-NETWORKS
Popis souboru: application/pdf
-
12
Autoři: a další
Zdroj: Sensors. 22(22)
Témata: ANN, Bayesian regularization, geosynthetic reinforced soil, machine learning, pullout capacity, weathered granite soil, Fuzzy neural networks, Granite, Learning algorithms, Mean square error, Multilayer neural networks, Network architecture, Quality assurance, Soil testing, Soils, Statistical tests, Geosynthetic reinforced soils, Granite soil, Laboratory test, Learning architectures, Machine-learning, Weathered granites, Laboratories
Popis souboru: print
Přístupová URL adresa: https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-61156
https://doi.org/10.3390/s22228699 -
13
Autoři:
Zdroj: Energy Reports, Vol 9, Iss, Pp 4861-4871 (2023)
Témata: Energy consumption, 11. Sustainability, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, Intelligent modeling and classification, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, Deep multilayer neural networks (DMNs), Discrete and continuous learning algorithms, 7. Clean energy, TK1-9971
Přístupová URL adresa: https://doaj.org/article/5dffb1c5a3544d57bb32d2b2fc2a2121
-
14
Autoři: a další
Zdroj: Communications in Nonlinear Science and Numerical Simulation. 147:108820
Témata: distributed order calculus, intermittent control, General theory for ordinary differential equations, multilayer neural networks, bipartite synchronization, Model systems in control theory, Stability theory for ordinary differential equations
Popis souboru: application/xml
Přístupová URL adresa: https://zbmath.org/8035185
https://doi.org/10.1016/j.cnsns.2025.108820 -
15
Autoři: a další
Zdroj: International Symposium on Signals, Circuits and Systems
Témata: bioinformatics, computer architecture, Computing power, edge computing, Green computing, Multilayer neural networks, Network architecture, neurons, Three dimensional computer graphics, Topology
Popis souboru: application/pdf
-
16
Autoři:
Zdroj: Mathematics ; Volume 13 ; Issue 4 ; Pages: 683
Témata: hydraulic robotic manipulator, hydraulic robot arm, multilayer neural networks, extended state observer, disturbance compensation, measurement noise, input saturation
Popis souboru: application/pdf
Relation: https://dx.doi.org/10.3390/math13040683
Dostupnost: https://doi.org/10.3390/math13040683
-
17
Autoři:
Zdroj: 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)
2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2022Témata: IMPLICIT REPRESENTATION, LIPSCHITZ REGULARIZATION, LIPSCHITZ, MULTILAYER NEURAL NETWORKS, Quantitative Biology - Tissues and Organs, 02 engineering and technology, REGULARISATION, COMPUTER VISION, COMPUTATIONAL ANATOMY ATLAS, FOS: Biological sciences, 0202 electrical engineering, electronic engineering, information engineering, MULTILAYERS, ML-ENGINEERING, ATLAS GENERATION, LIPSCHITZ CONTINUITY, Tissues and Organs (q-bio.TO), COMPUTATIONAL ANATOMY, MULTILAYERS PERCEPTRONS
Popis souboru: application/pdf
-
18
Autoři: a další
Přispěvatelé: a další
Zdroj: Microwave and Optical Technology Letters. 65:2210-2216
Témata: Artificial intelligence, Wireless communication system, Surrogate modeling, Speed control, Performance, Design optimization, Multilayer neural networks, Microwave filter, Design solutions, Data driven, Microstrip filters, 5G mobile communication systems, Electromagnetic simulation, Microwave filters, 5g, Signal, Microwave Filters, Support vector machines, Optics, Radiofrequencies, Line, Bandpass filters, Data-driven model, Data driven modeling, Regression, Convolution, Simulation Driven Design, Micro-strips, Antenna, Antennas, Convolutional neural networks, Regression analysis, 5G
Popis souboru: application/pdf
Přístupová URL adresa: https://hdl.handle.net/20.500.12508/2820
-
19
Autoři: a další
Přispěvatelé: a další
Zdroj: Scopus
Web of ScienceTémata: Inverse problems, Anthropometry, Sit-to-stand, Inverse dynamics, Multilayer neural networks, Back Propagation, Torque estimation, Backpropagation, Kinematic data, Joint torques, Network layers, Artificial neural network modeling, Sit to stand, Torque, Joints (anatomy), Model-based OPC, Input datas, Back-propagation, Human limbs
Přístupová URL adresa: https://avesis.gazi.edu.tr/publication/details/a509506f-ffb1-40bf-a28d-17a501e1b11f/oai
-
20
Autoři:
Zdroj: 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1098-1103
Témata: FOS: Computer and information sciences, Computer Science - Machine Learning, Output layer, IOU, Network-based, White box, Object detection, Computer Science - Artificial Intelligence, Multilayer neural networks, Activation functions, Deep learning, 02 engineering and technology, Adversarial machine learning, Chemical activation, Trustworthy AI, Machine Learning (cs.LG), Hidden layers, Artificial Intelligence (cs.AI), Deep neural networks, Loss functions, 0202 electrical engineering, electronic engineering, information engineering, Robustness, Machine-learning
Popis souboru: application/pdf
Přístupová URL adresa: http://arxiv.org/abs/2202.07342
https://hdl.handle.net/11729/5093
Full Text Finder
Nájsť tento článok vo Web of Science