Výsledky vyhľadávania - "Multi-target models"
-
1
Autori: a ďalší
Zdroj: Addi. Archivo Digital para la Docencia y la Investigación
Universidad del País VascoPredmety: Big Data, 0301 basic medicine, Databases, Factual, nanoparticle, ChEMBL, Antineoplastic Agents, Vitamins, 02 engineering and technology, anticancer compounds, 3. Good health, Machine Learning, Drug Liberation, 03 medical and health sciences, machine learning, Drug Delivery Systems, big data, Neoplasms, Antineoplastic Combined Chemotherapy Protocols, Linear Models, Nanoparticles, Computer Simulation, Perturbation Theory Machine Learning, PTML, 0210 nano-technology, multi-target models
Popis súboru: application/pdf
-
2
Autori: a ďalší
Zdroj: Addi. Archivo Digital para la Docencia y la Investigación
Universidad del País VascoPredmety: 0301 basic medicine, Models, Statistical, Databases, Factual, Molecular Structure, ChEMBL, Bayes Theorem, Vitamins, vitamins, 01 natural sciences, 0104 chemical sciences, machinelearning, Machine Learning, 03 medical and health sciences, big data, Combinatorial Chemistry Techniques, multi-target models, perturbation theory
Popis súboru: application/pdf
-
3
Autori:
Zdroj: Addi. Archivo Digital para la Docencia y la Investigación
Universidad del País VascoPredmety: 0301 basic medicine, ChEMBL, Quantitative Structure-Activity Relationship, Antineoplastic Agents, Models, Theoretical, 3. Good health, Machine Learning, 03 medical and health sciences, machine learning, big data, Neoplasms, Drug Discovery, anti-cancer compounds, Humans, Biological Assay, Neural Networks, Computer, artificial neural networks, multi-target models, Databases, Chemical, perturbation theory
Popis súboru: application/pdf
Prístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/30240186
http://hdl.handle.net/10810/72593
https://pubsdc3.acs.org/doi/10.1021/acscombsci.8b00090
https://pubs.acs.org/doi/10.1021/acscombsci.8b00090
http://europepmc.org/abstract/MED/30240186
https://jglobal.jst.go.jp/detail?JGLOBAL_ID=201902231006007972
https://www.ncbi.nlm.nih.gov/pubmed/30240186 -
4
Autori:
Zdroj: International Journal of Molecular Sciences, Vol 20, Iss 17, p 4191 (2019)
Predmety: PI3K inhibitors, cancer, QSAR, multi-target models, linear discriminant analysis, random forest, Biology (General), QH301-705.5, Chemistry, QD1-999
Relation: https://www.mdpi.com/1422-0067/20/17/4191; https://doaj.org/toc/1422-0067; https://doaj.org/article/63de9ee086a84ee887aa9821b4515582
-
5
Autori:
Zdroj: Molecules, Vol 24, Iss 21, p 3909 (2019)
Predmety: erk inhibitors, qsar, multi-target models, fragment analysis, virtual screening, molecular docking, molecular dynamics, binding free energy, Organic chemistry, QD241-441
Popis súboru: electronic resource
Prístupová URL adresa: https://doaj.org/article/857286722c5141b1a9c188cee98e0fa5
-
6
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Cheminformatics, Drug Discovery, Large data sets, Machinelearning, Multi-target models, PTML, Perturbation theory
Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO//CTQ2013-41229-P/ES/CATALISIS ASIMETRICA EN SINTESIS. NUEVOS LIGANDOS QUIRALES PARA CATALIZADORES BASADOS EN METALES DE TRANSICION, APLICACIONES SINTETICAS Y MODELOS COMPUTACIONALES/; info:eu-repo/grantAgreement/MINECO//CTQ2016-74881-P; https://doi.org/10.2174/1568026620666200916122616; Sí; https://hdl.handle.net/10261/339506; http://dx.doi.org/10.13039/501100003329; http://dx.doi.org/10.13039/501100010801; http://dx.doi.org/10.13039/501100001871; http://dx.doi.org/10.13039/501100003086; https://api.elsevier.com/content/abstract/scopus_id/85092238305
Dostupnosť: https://hdl.handle.net/10261/339506
https://doi.org/10.2174/1568026620666200916122616
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100010801
https://doi.org/10.13039/501100001871
https://doi.org/10.13039/501100003086
https://api.elsevier.com/content/abstract/scopus_id/85092238305 -
7
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Allosteric modulators, Artificial Neural Networks, Big data, ChEMBL, Machine Learning, Melanostatin, Multi-target models, Perturbation Theory
Time: 3209
Relation: https://doi.org/10.1021/acschemneuro.0c00687; FCT -- UIDB/50006/2020; FEDER -- CTQ2016-74881-P; http://hdl.handle.net/10347/32607
-
8
-
9
Autori: a ďalší
Témy: ChEMBL, nanoparticle, anticancer compounds, Perturbation Theory Machine Learning, PTML, machine learning, big data, multi-target models, info:eu-repo/semantics/article
URL:
http://hdl.handle.net/10810/72299 https://doi.org/10.1021/acs.molpharmaceut.0c00308
1543-8384
1543-8392https://doi.org/10.1021/acs.molpharmaceut.0c00308
info:eu-repo/grantAgreement/MINECO/CTQ2016-74881-P -
10
Autori: a ďalší
Témy: Cheminformatics, Drug Discovery, Large data sets, Machinelearning, Multi-target models, PTML, Perturbation theory, artículo de revisión
URL:
http://hdl.handle.net/10261/339506 https://api.elsevier.com/content/abstract/scopus_id/85092238305 https://doi.org/10.2174/1568026620666200916122616 https://doi.org/10.2174/1568026620666200916122616
Sí
info:eu-repo/grantAgreement/MINECO//CTQ2013-41229-P/ES/CATALISIS ASIMETRICA EN SINTESIS. NUEVOS LIGANDOS QUIRALES PARA CATALIZADORES BASADOS EN METALES DE TRANSICION, APLICACIONES SINTETICAS Y MODELOS COMPUTACIONALES
info:eu-repo/grantAgreement/MINECO//CTQ2016-74881-P -
11
Autori: a ďalší
Témy: ChEMBL, anti-cancer compounds, perturbation theory, machine learning, artificial neural networks, big data, multi-target models, info:eu-repo/semantics/article
URL:
http://hdl.handle.net/10810/72593 https://doi.org/10.1021/acscombsci.8b00090
2156-8952https://doi.org/10.1021/acscombsci.8b00090
info:eu-repo/grantAgreement/MINECO/CTQ2016-74881-P -
12
Autori:
Zdroj: Chemosphere [Chemosphere] 2020 Apr; Vol. 244, pp. 125489. Date of Electronic Publication: 2019 Nov 27.
Spôsob vydávania: Journal Article
Informácie o časopise: Publisher: Elsevier Science Ltd Country of Publication: England NLM ID: 0320657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-1298 (Electronic) Linking ISSN: 00456535 NLM ISO Abbreviation: Chemosphere Subsets: MEDLINE
Výrazy zo slovníka MeSH: Metal Nanoparticles/*toxicity , Toxicity Tests/*methods, Computer Simulation ; DNA Damage ; Ecosystem ; Humans ; Machine Learning ; Metals ; Nanostructures ; Oxides
Nájsť tento článok vo Web of Science
Full Text Finder