Suchergebnisse - "Memory efficient"
-
1
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 28777-28788 (2025)
-
2
Autoren:
Quelle: IEEE Access, Vol 13, Pp 49584-49596 (2025)
-
3
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 86277-86289 (2025)
-
4
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 77582-77592 (2025)
Schlagwörter: FOS: Computer and information sciences, feed-forward network (FNN), Computer Science - Machine Learning, Computer Science - Computation and Language, Computer Science - Artificial Intelligence, quantum mechanics, Attention mechanism, Computer Science - Neural and Evolutionary Computing, FOS: Physical sciences, TK1-9971, Machine Learning (cs.LG), condensation, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Artificial Intelligence (cs.AI), Electrical engineering. Electronics. Nuclear engineering, Neural and Evolutionary Computing (cs.NE), memory-efficient, Computation and Language (cs.CL), path integral
-
5
Autoren:
Weitere Verfasser:
Quelle: Proceedings of the Nineteenth European Conference on Computer Systems. :999-1015
Schlagwörter: QA75, Computer Science - Machine Learning, QA75 Electronic computers. Computer science, Memory efficient training, Edge computing, NIS, CNN training, Local learning, 3rd-NDAS
Dateibeschreibung: application/pdf
-
6
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 198471-198481 (2025)
Schlagwörter: Deep learning, transformer model, natural language processing, parameter-efficient fine-tuning, memory-efficient fine-tuning, natural languege understanding, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
7
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 184679-184693 (2025)
Schlagwörter: Software/hardware co-design, memory-efficient network compression, parallel hardware architecture, low resource-utilization, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
8
Autoren: Minhyeok Lee
Quelle: Fractal and Fractional, Vol 9, Iss 11, p 733 (2025)
Schlagwörter: gradient accumulation, fractional calculus, memory-efficient training, stochastic optimization, power-law weighting, deep learning, Thermodynamics, QC310.15-319, Mathematics, QA1-939, Analysis, QA299.6-433
Dateibeschreibung: electronic resource
-
9
Autoren: et al.
Quelle: Bioengineering, Vol 12, Iss 9, p 974 (2025)
Schlagwörter: GPU memory-efficient, image segmentation, CT images, poor/non-contrasted CT, spatial structure, deep learning, Technology, Biology (General), QH301-705.5
Dateibeschreibung: electronic resource
-
10
Autoren:
Quelle: Engineering Proceedings, Vol 104, Iss 1, p 77 (2025)
Schlagwörter: deep learning, memory-efficient architectures, real-time data processing, low-power devices, quantization, parameter pruning, Engineering machinery, tools, and implements, TA213-215
Dateibeschreibung: electronic resource
-
11
Autoren:
Quelle: Mathematics, Vol 13, Iss 15, p 2366 (2025)
Schlagwörter: LLM, KV cache, transformer, LLM inference optimization, attention entropy, memory-efficient caching, Mathematics, QA1-939
Dateibeschreibung: electronic resource
-
12
Autoren:
Quelle: Machine Learning: Science and Technology, Vol 6, Iss 4, p 045018 (2025)
Schlagwörter: physics-AI symbiosis, interpretable AI, physics-inspired algorithms, physics-based neural networks, memory-efficient AI, Computer engineering. Computer hardware, TK7885-7895, Electronic computers. Computer science, QA75.5-76.95
Relation: https://doi.org/10.1088/2632-2153/ae0f37; https://doaj.org/toc/2632-2153; https://doaj.org/article/b97d56612e9342afadd949cf144179ee
-
13
Autoren:
Quelle: Data Science and Engineering, Vol 9, Iss 1, Pp 73-87 (2023)
Schlagwörter: Knowledge discovery, Incremental datasets, Memory efficient mining, Electronic computers. Computer science, 0202 electrical engineering, electronic engineering, information engineering, Information technology, QA75.5-76.95, 02 engineering and technology, T58.5-58.64, High utility itemset mining, Data mining
-
14
Autoren: et al.
Quelle: Mathematical Biosciences and Engineering, Vol 21, Iss 2, Pp 2163-2188 (2024)
Schlagwörter: Cytoplasm, 0211 other engineering and technologies, 02 engineering and technology, memory efficient model, white blood cell segmentation, cell type classification, 3. Good health, QA1-939, Image Processing, Computer-Assisted, Leukocytes, 0202 electrical engineering, electronic engineering, information engineering, Neural Networks, Computer, gnn, superpixel metric learning, TP248.13-248.65, Mathematics, Algorithms, Biotechnology
-
15
Autoren: et al.
Quelle: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. :1441-1451
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, deep neural networks, Computer Vision and Pattern Recognition (cs.CV), meta learning, Computer Science - Computer Vision and Pattern Recognition, 0202 electrical engineering, electronic engineering, information engineering, memory-efficient training, 02 engineering and technology, Numerical Analysis and Scientific Computing, Machine Learning (cs.LG)
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/abs/2206.12705
-
16
Autoren:
Quelle: Artificial Intelligence in Geosciences, Vol 5, Iss , Pp 100087- (2024)
Schlagwörter: Invertible neural networks, Large scale deep learning, Memory efficient deep learning, Geography (General), G1-922, Information technology, T58.5-58.64
Dateibeschreibung: electronic resource
-
17
Autoren: Needham, Eric
Schlagwörter: Prime Generation, φ-Harmonic Geometry, Deterministic Algorithms, Spiral Doorway Method, Bootstrap Calibration, Recursive Vacuum Theory, Fibonacci Resonance, Shell Structure, Prime Number Theorem, Computational Number Theory, Predictive Framework, Primality Verification, Memory-Efficient Algorithms, Prime Gap Structure, Emergent Number Fields, Eric Needham
Relation: https://zenodo.org/records/16656771; oai:zenodo.org:16656771; https://doi.org/10.5281/zenodo.16656771
-
18
Autoren: et al.
Quelle: IEEE Access, Vol 11, Pp 1386-1406 (2023)
Schlagwörter: pruning, Memory-efficient network compression, 0202 electrical engineering, electronic engineering, information engineering, quantization, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, image-level object classification, resource-restricted edge-devices, TK1-9971
-
19
Autoren:
Quelle: IEEE Access, Vol 11, Pp 128633-128643 (2023)
-
20
Autoren: et al.
Quelle: Mathematical Biosciences and Engineering, Vol 21, Iss 2, Pp 2163-2188 (2024)
Schlagwörter: gnn, superpixel metric learning, memory efficient model, white blood cell segmentation, cell type classification, Biotechnology, TP248.13-248.65, Mathematics, QA1-939
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1551-0018
Full Text Finder
Nájsť tento článok vo Web of Science