Search Results - "Many-objective evolutionary algorithms"
-
1
Source: Computer Science and Application. 15:309-317
-
2
Authors: et al.
Source: Engineering Optimization. 57:287-308
-
3
Authors: et al.
Source: Nuclear Science and Techniques. 36
-
4
Authors:
Source: Proceedings of the Genetic and Evolutionary Computation Conference Companion. :85-86
-
5
Authors: et al.
Source: IEEE Transactions on Systems, Man, and Cybernetics: Systems. 53:7783-7793
-
6
Authors:
Source: 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA). :685-690
-
7
Authors:
Source: Lecture Notes in Computer Science ISBN: 9783031700842
Subject Terms: FOS: Computer and information sciences, Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
Access URL: http://arxiv.org/abs/2404.12746
-
8
Authors: et al.
Source: Applied Intelligence. 53:7423-7438
-
9
Authors:
Source: IEEE Internet of Things Journal. :1-1
-
10
Authors: et al.
Source: Nuclear Science and Techniques. 34
-
11
Authors: et al.
Contributors: et al.
Source: Advances in Operations Research. 2021:1-16
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, [INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC]
File Description: text/xhtml; application/pdf
-
12
Authors:
Source: Bezerra, L C T, Lopez-Ibanez, M & Stützle, T 2019, Archiver Effects on the Performance of State-of-the-art Multi and Many-objective Evolutionary Algorithms. in GECCO2019. The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13/07/19. https://doi.org/10.1145/3321707.3321789
Subject Terms: Multi-objective optimization, archiving, algorithm configuration, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, evolutionary algorithms, experimental analysis
File Description: application/pdf
Access URL: https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F3321707.3321789&file=p620-bezerra_suppl.pdf&download=true
https://www.research.manchester.ac.uk/portal/files/103064738/BezLopStu2019gecco.pdf
https://dblp.uni-trier.de/db/conf/gecco/gecco2019.html#Bezerra0S19
https://www.research.manchester.ac.uk/portal/en/publications/archiver-effects-on-the-performance-of-stateoftheart-multi-and-manyobjective-evolutionary -algorithms (2e817efe-d282-4636-8984-197c0f39db67).html
https://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/301431/Details
https://dl.acm.org/doi/pdf/10.1145/3321707.3321789 -
13
Authors:
Source: Evolutionary computation, 28 (2
Bezerra, L C T, López-Ibáñez, M & Stützle, T 2020, 'Automatically Designing State-of-the-Art Multi-and Many-Objective Evolutionary Algorithms', Evolutionary Computation, vol. 28, no. 2, pp. 195-226. https://doi.org/10.1162/evco_a_00263Subject Terms: automatic algorithm design, Automation, Informatique mathématique, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, evolutionary algorithms, Biological Evolution, Algorithms, Multiobjective optimization
File Description: 1 full-text file(s): application/pdf
Access URL: https://www.mitpressjournals.org/doi/pdf/10.1162/evco_a_00263
https://pubmed.ncbi.nlm.nih.gov/31464527
https://direct.mit.edu/evco/article/28/2/195/94985/Automatically-Designing-State-of-the-Art-Multi-and
https://www.ncbi.nlm.nih.gov/pubmed/31464527
https://doi.org/10.1162/evco_a_00263
https://www.mitpressjournals.org/doi/full/10.1162/evco_a_00263
https://dblp.uni-trier.de/db/journals/ec/ec28.html#BezerraLS20
https://dl.acm.org/doi/10.1162/evco_a_00263
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/309124 -
14
Authors:
Source: Ramírez, A., Romero, J. R., & Ventura, S. (2016). A comparative study of many-objective evolutionary algorithms for the discovery of software architectures. Empirical Software Engineering, 21(6), 2546-2600. https://doi.org/10.1007/s10664-015-9399-z
Helvia. Repositorio Institucional de la Universidad de Córdoba
Universidad de CórdobaSubject Terms: Many-objective evolutionary algorithms, Software architecture discovery, Search based software engineering, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Multi-objective evolutionary algorithms
File Description: application/pdf
-
15
Authors: et al.
Source: BIRD. BCAM's Institutional Repository Data
instnameSubject Terms: Many-objective evolutionary algorithms, Preference incorporation, Outranking approach, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Ant Colony Optimization, Interval numbers
File Description: application/pdf
Access URL: http://hdl.handle.net/20.500.11824/1665
-
16
Authors: et al.
Source: Swarm and Evolutionary Computation. 47:72-79
Subject Terms: 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
17
Authors: et al.
Index Terms: evolutionary algorithm, intrusion detection, multi-objective optimization, optimal sensor placement, Wasserstein distance, water distribution network, INF/01 - INFORMATICA, info:eu-repo/semantics/article
URL:
https://hdl.handle.net/10281/416236
info:eu-repo/semantics/altIdentifier/wos/WOS:000996724500001
volume:11
issue:10
journal:MATHEMATICS -
18
Authors: et al.
Source: Information Sciences. 483:332-349
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
19
Authors:
Source: Proceedings of the First International Conference on Data Science, E-learning and Information Systems. :1-6
Subject Terms: 13. Climate action, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Access URL: https://dl.acm.org/citation.cfm?id=3280028
-
20
Authors:
Source: Bezerra, L C T, Lopez-Ibanez, M & Stützle, T 2017, 'A Large-Scale Experimental Evaluation of High-Performing Multi-and Many-Objective Evolutionary Algorithms', Evolutionary Computation. https://doi.org/10.1162/evco_a_00217
Subject Terms: Multi-objective optimization, Performance assessment, Automatic algorithm configuration, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Evolutionary algorithms, Sciences exactes et naturelles
File Description: application/pdf; No full-text files
Access URL: https://www.research.manchester.ac.uk/portal/files/61730519/BezLopStu2017assessment.pdf
https://pubmed.ncbi.nlm.nih.gov/29155605
https://research.manchester.ac.uk/en/publications/dd900608-9380-48fe-896a-7ec8180c4efa
https://doi.org/10.1162/evco_a_00217
https://pubmed.ncbi.nlm.nih.gov/29155605/
https://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/283598/Details
https://www.mitpressjournals.org/doi/full/10.1162/evco_a_00217
https://core.ac.uk/display/132156078
https://www.ncbi.nlm.nih.gov/pubmed/29155605
https://dblp.uni-trier.de/db/journals/ec/ec26.html#BezerraLS18
https://research.manchester.ac.uk/en/publications/dd900608-9380-48fe-896a-7ec8180c4efa
https://doi.org/10.1162/evco_a_00217
https://pure.manchester.ac.uk/ws/files/61730519/BezLopStu2017assessment.pdf
Nájsť tento článok vo Web of Science
Full Text Finder