Výsledky vyhľadávania - "Malicious JavaScript"
-
1
Autori: a ďalší
Zdroj: IEEE Access, Vol 11, Pp 102727-102745 (2023)
Predmety: source code representation, cyber security, graph neural network, Abstract syntax tree, Electrical engineering. Electronics. Nuclear engineering, malicious JavaScript detection, TK1-9971
Prístupová URL adresa: https://doaj.org/article/96b921f1abd0426fa01fe22f24802029
-
2
Autori:
Zdroj: International Journal of Network Security & Its Applications. 13:11-21
-
3
Autori: a ďalší
Zdroj: Future Internet, Vol 14, Iss 8, p 217 (2022)
Predmety: malware detection, intrusion detection, obfuscated malicious, machine learning, malicious JavaScript, Information technology, T58.5-58.64
Relation: https://www.mdpi.com/1999-5903/14/8/217; https://doaj.org/toc/1999-5903; https://doaj.org/article/e2fa7807e7e643e98d2b76506dbc7dd6
-
4
Autori: A.K. Singh
Zdroj: Data in Brief, Vol 32, Iss , Pp 106304- (2020)
Predmety: Web security, Malicious webpages, Machine learning, Deep learning, Malicious JavaScript, Computer applications to medicine. Medical informatics, R858-859.7, Science (General), Q1-390
Popis súboru: electronic resource
Relation: http://www.sciencedirect.com/science/article/pii/S2352340920311987; https://doaj.org/toc/2352-3409
Prístupová URL adresa: https://doaj.org/article/34101d9e644f48669079516a660f049f
-
5
Autori: a ďalší
Predmety: Cybersecurity, Machine learning, Doc2Vec, Malicious JavaScript detection, Feature learning, Abstract Syntax Tree
Relation: info:doi/10.1016/j.asoc.2019.105721
-
6
Autori: a ďalší
Zdroj: Applied Sciences, Vol 10, Iss 3440, p 3440 (2020)
Predmety: cyber security, malware detection, program slice, deep learning, malicious JavaScript, Bidirectional LSTM, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Relation: https://www.mdpi.com/2076-3417/10/10/3440; https://doaj.org/toc/2076-3417; https://doaj.org/article/4cd8785c01064d518ea72e49e9c81cf6
-
7
Autori:
Zdroj: Applied Sciences, Vol 10, Iss 6116, p 6116 (2020)
Predmety: malicious JavaScript, abstract syntax tree, static analysis, obfuscation detection, redirection detection, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Relation: https://www.mdpi.com/2076-3417/10/17/6116; https://doaj.org/toc/2076-3417; https://doaj.org/article/7b5df539245b4bc1ab99a72b2bb9f1e9
-
8
Autori:
Zdroj: Journal of Information Processing. 2022, 30:591
-
9
Autori:
Predmety: Cross-site scripting, ImageSubXSS, Malicious JavaScript, Web application attacks, XSS attacks
Relation: https://zenodo.org/records/4066153; oai:zenodo.org:4066153
-
10
Autori: a ďalší
Zdroj: Proceedings of the 2015 International Symposium on Software Testing and Analysis. :48-59
Predmety: malware detection, L, Programming Languages and Compilers, 0202 electrical engineering, electronic engineering, information engineering, Software Engineering, 02 engineering and technology, malicious JavaScript, behavior modelling, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: https://ink.library.smu.edu.sg/sis_research/4953
https://ink.library.smu.edu.sg/sis_research/4953/
https://dl.acm.org/citation.cfm?id=2771814
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=5956&context=sis_research
https://doi.org/10.1145/2771783.2771814
https://dblp.uni-trier.de/db/conf/issta/issta2015.html#XueWLXSC15 -
11
Autori: a ďalší
Zdroj: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering ISBN: 9783319788128
Predmety: FOS: Computer and information sciences, Computer Science - Cryptography and Security, Forced execution, Information Security, 02 engineering and technology, Malicious javascript, False positive and false negatives, Design and implementations, 0202 electrical engineering, electronic engineering, information engineering, Detection rates, Dynamic analysis techniques, Execution engine, Analysis techniques, Cryptography and Security (cs.CR)
Popis súboru: application/pdf
Prístupová URL adresa: http://arxiv.org/pdf/1701.07860
http://arxiv.org/abs/1701.07860
https://dblp.uni-trier.de/db/journals/corr/corr1701.html#HuCDHY17
https://link.springer.com/content/pdf/10.1007%2F978-3-319-78813-5_37.pdf
http://ui.adsabs.harvard.edu/abs/2017arXiv170107860H/abstract
https://rd.springer.com/chapter/10.1007/978-3-319-78813-5_37
https://arxiv.org/abs/1701.07860
https://link.springer.com/chapter/10.1007/978-3-319-78813-5_37 -
12
Autori: a ďalší
Zdroj: ISBN:978-1-61208-475-6.
Predmety: Obfuscated JavaScript, Detection, Malicious JavaScript, Machine learning, info:eu-repo/classification/ddc/006
Popis súboru: application/pdf
Relation: https://www.thinkmind.org/index.php?view=article&articleid=icimp_2016_1_20_30023; https://digitalcollection.zhaw.ch/handle/11475/7717
-
13
-
14
Autori:
Prispievatelia:
Predmety: JavaScript, machine learning, AST stablo, TECHNICAL SCIENCES. Computing, TEHNIČKE ZNANOSTI. Računarstvo, AST tree, zlonamjerni JavaScript, malicious JavaScript, strojno učenje
Popis súboru: application/pdf
-
15
Autori: a ďalší
Zdroj: Applied Soft Computing. 84:105721
Predmety: Cybersecurity, Machine learning, Malicious JavaScript detection, Feature learning, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Abstract Syntax Tree, Doc2Vec
-
16
Autori:
Prispievatelia:
Predmety: ddc:004, JavaScript, Malicious JavaScript, Browser Extensions, Computersicherheit, Statische Analyse, Static Analysis, Data Flow, Control Flow, Machine Learning, Web Security, Vulnerable JavaScript, AST, Adversarial Attacks
-
17
Autori: a ďalší
Predmety: Artificial intelligence not elsewhere classified, malware detection, malicious JavaScript, PDF documents, code obfuscation, School of Information Technology, 4604 Cybersecurity and privacy, 4612 Software engineering
Relation: http://hdl.handle.net/10536/DRO/DU:30104365; https://figshare.com/articles/conference_contribution/FEPDF_a_robust_feature_extractor_for_malicious_PDF_detection/20825080
-
18
Autori: Šulák, Ladislav
Thesis Advisors: Černocký, Jan, Beneš, Karel
Predmety: malware, škodlivý software, malicious JavaScript, deep learning, web-based threats, škodlivý JavaScript, detekcia škodlivých URL, static analysis, statická analýya, drive-by-download, strojové učenie, webové hrozby, machine learning, hlboké učenie, malicious URL detection
Dostupnosť: http://www.nusl.cz/ntk/nusl-385990
-
19
Prispievatelia:
Predmety: machine training, методи виявлення, classification, static analysis, шкідливий програмний засіб, malicious javascript, класифікація, javascript, детектування, статичний аналіз, машинне навчання, detection methods
Popis súboru: application/pdf
Prístupová URL adresa: https://ela.kpi.ua/handle/123456789/31425
-
20
Autori: Hu, Xunchao
Zdroj: Dissertations - ALL
Predmety: Cybersecurity, Exploit Diagnosis, Exploit Mitigation, Forced Execution, Malicious JavaScript, Engineering
Popis súboru: application/pdf
Relation: https://surface.syr.edu/etd/802; https://surface.syr.edu/context/etd/article/1803/viewcontent/HU_XUNCHAO.pdf
Full Text Finder
Nájsť tento článok vo Web of Science