Výsledky vyhledávání - "Logical and relational learning"
-
1
Autoři: a další
Přispěvatelé: a další
Témata: safety, [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], logic, computational complexity, [INFO.INFO-LO] Computer Science [cs]/Logic in Computer Science [cs.LO], databases, Computing methodologies → Logical and relational learning, [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [INFO] Computer Science [cs], General and reference → Surveys and overviews, Computing methodologies → Machine learning approaches, machine learning, Computing methodologies → Artificial intelligence, learning theory, Theory of computation → Models of learning, Theory of computation → Constraint and logic programming, Theory of computation → Modal and temporal logics, verification
Popis souboru: application/pdf
-
2
Autoři: a další
Zdroj: Artificial Intelligence. 217:117-143
Témata: Logical and relational learning, Statistical relational learning, Kernel methods, Prolog, Deductive databases
Popis souboru: print
-
3
Autoři: a další
Přispěvatelé: a další
Zdroj: Leibniz International Proceedings in Informatics (LIPIcs) ; 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025) ; https://hal.science/hal-04931324 ; 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025), 2025, Amsterdam, Netherlands. ⟨10.4230/LIPIcs.CSL.2025.8⟩
Témata: monadic second-order definable concept learning, agnostic probably approximately correct learning, parameterized complexity, clique-width, fixed-parameter tractable, Boolean classification, supervised learning, monadic second-order logic, Theory of computation → Logic, Theory of computation → Complexity theory and logic, Theory of computation → Fixed parameter tractability, Computing methodologies → Logical and relational learning, Computing methodologies → Supervised learning, [INFO]Computer Science [cs]
Geografické téma: Amsterdam, Netherlands
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1909.03820; ARXIV: 1909.03820
-
4
Autoři:
Zdroj: Saarbrücken/Wadern, Germany : Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Leibniz international proceedings in informatics 183, 10:1-10:18 (2021). doi:10.4230/LIPICS.CSL.2021.10 ; 29th EACSL Annual Conference on Computer Science Logic : CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (virtual conference) / edited by Christel Baier, Jean Goubault-Larrecq ; 29th EACSL Annual Conference on Computer Science Logic : CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (virtual conference) / edited by Christel Baier, Jean Goubault-Larrecq 29. EACSL Annual Conference on Computer Science Logic, CSL 2021, online, 2021-01-25 - 2021-01-28
Témata: Computing methodologies → Logical and relational learning, Computing methodologies → Supervised learning, Feferman-Vaught decomposition, Gaifman normal form, Theory of computation → Complexity theory and logic, Theory of computation → Logic, agnostic probably approximately correct learning, classification problems, first-order definable concept learning, first-order logic with counting, locality, weight aggregation logic
Geografické téma: DE
Relation: info:eu-repo/semantics/altIdentifier/issn/1868-8969; info:eu-repo/semantics/altIdentifier/isbn/978-3-95977-175-7
-
5
Autoři:
Přispěvatelé:
Zdroj: Saarbrücken/Wadern, Germany : Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Leibniz international proceedings in informatics 183, 10:1-10:18 (2021). doi:10.4230/LIPICS.CSL.2021.10
29th EACSL Annual Conference on Computer Science Logic : CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (virtual conference) / edited by Christel Baier, Jean Goubault-Larrecq
29th EACSL Annual Conference on Computer Science Logic : CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (virtual conference) / edited by Christel Baier, Jean Goubault-Larrecq29. EACSL Annual Conference on Computer Science Logic, CSL 2021, online, 2021-01-25-2021-01-28Témata: FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Science - Machine Learning, Computer Science - Artificial Intelligence, agnostic probably approximately correct learning, Computing methodologies → Logical and relational learning, 0102 computer and information sciences, 01 natural sciences, Gaifman normal form, Theory of computation → Logic, Logic in Computer Science (cs.LO), Machine Learning (cs.LG), locality, Artificial Intelligence (cs.AI), first-order definable concept learning, weight aggregation logic, first-order logic with counting, ddc:004, 0101 mathematics, Theory of computation → Complexity theory and logic, Feferman-Vaught decomposition, classification problems, Computing methodologies → Supervised learning
Popis souboru: application/pdf
Přístupová URL adresa: http://arxiv.org/abs/2009.10574
https://drops.dagstuhl.de/opus/volltexte/2021/13444/
https://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-10574
https://drops.dagstuhl.de/opus/volltexte/2021/13444/pdf/LIPIcs-CSL-2021-10.pdf/
http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-10574
https://arxiv.org/abs/2009.10574
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.10
https://publications.rwth-aachen.de/record/815149 -
6
Autoři:
Přispěvatelé:
Zdroj: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. :1311-1320
Témata: Nonparametric statistics, 02 engineering and technology, Electrical Engineering - Electronic Engineering - Information Engineering, Mathematics of computing, 01 natural sciences, Computing methodologies, Probability and statistics, Machine learning approaches, Machine learning, 0202 electrical engineering, electronic engineering, information engineering, Engineering and Technology, Logical and relational learning, Inductive logic learning, 0101 mathematics
Popis souboru: pdf
-
7
Autoři:
Zdroj: In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. (pp. pp. 2243-2250). The Association for Computing Machinery: New York (NY), USA. (2019)
Témata: Computing methodologies, Artificial intelligence, Knowledge representation and reasoning, Semantic networks, Machine learning, Machine learning approaches, Logical and relational learning, Statistical relational learning
Popis souboru: text
Relation: https://discovery.ucl.ac.uk/id/eprint/10075181/8/Minervini_Embedding%20cardinality%20constraints%20in%20neural%20link%20predictors_AAM.pdf; https://discovery.ucl.ac.uk/id/eprint/10075181/
-
8
Autoři: a další
Přispěvatelé: a další
Zdroj: ISBN:9781577357384 ; ISSN:1045-0823 ; Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), vol. 2015-January, (4183-4187) ; International Joint Conference on Artificial Intelligence (IJCAI-15), Buenos Aires, Argentina, 25-30 July 2015.
Témata: logical and relational learning, statistical relational learning, kernel-based learning, Prolog, deductive database, graph kernel, Science & Technology, Technology, Computer Science, Artificial Intelligence, Interdisciplinary Applications
Popis souboru: application/pdf
-
9
Autoři: a další
Přispěvatelé: a další
Témata: Logical and relational learning, Statistical Relational learning, kernel methods, Prolog, Deductive databases
Popis souboru: application/pdf
-
10
Autoři: a další
Přispěvatelé: a další
Témata: classification, regression, multi-task learning, and collective classification. Keywords, Logical and relational learning, Statistical Relational learning, kernel methods, Prolog, Deductive databases
Popis souboru: application/pdf
Nájsť tento článok vo Web of Science
Full Text Finder