Suchergebnisse - "LSSVM model"
-
1
Autoren: et al.
Quelle: Journal of Environmental Engineering and Landscape Management, Vol 33, Iss 2 (2025)
-
2
Autoren: et al.
Quelle: Case Studies in Thermal Engineering, Vol 73, Iss , Pp 106662- (2025)
Schlagwörter: CO2 absorption, Intelligent algorithms, LSSVM model, Rotating packed bed, Mass transfer, Engineering (General). Civil engineering (General), TA1-2040
Dateibeschreibung: electronic resource
-
3
A Novel Prediction Method for the Remaining Life of Corrosion Damage in Oil and Gas Pipeline Systems
Autoren:
Quelle: IEEE Access, Vol 12, Pp 176104-176123 (2024)
-
4
Autoren:
Quelle: Financial Innovation, Vol 9, Iss 1, Pp 1-23 (2023)
Schlagwörter: Artificial Intelligence and Robotics index return forecasting, PSO-LSSVM model, GARCH model, Decomposition and integration model, Combination model, Public finance, K4430-4675, Finance, HG1-9999
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2199-4730
-
5
Autoren: et al.
Quelle: Water Supply, Vol 22, Iss 2, Pp 1951-1963 (2022)
Schlagwörter: TC401-506, advanced optimization algorithm, Water supply for domestic and industrial purposes, water quality index, 0207 environmental engineering, 02 engineering and technology, 01 natural sciences, 6. Clean water, hybrid optimized lssvm model, River, lake, and water-supply engineering (General), kernel function, 14. Life underwater, TD201-500, river water quality parameter, 0105 earth and related environmental sciences
-
6
Research on HC-LSSVM Model for Soft Soil Settlement Prediction Based on Homotopy Continuation Method
Autoren: et al.
Quelle: Applied Sciences, Vol 11, Iss 10666, p 10666 (2021)
Schlagwörter: soft soil settlement prediction, LSSVM model, model parameter solution, homotopy continuation method, HC-LSSVM model, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Relation: https://www.mdpi.com/2076-3417/11/22/10666; https://doaj.org/toc/2076-3417; https://doaj.org/article/a7197a401dd84e06b75733f81ac1c7da
-
7
Autoren: et al.
Schlagwörter: Physiology, Space Science, Environmental Sciences not elsewhere classified, Biological Sciences not elsewhere classified, Chemical Sciences not elsewhere classified, Information Systems not elsewhere classified, select characteristic wavelengths, encompassing 145 categories, actual industrial scenarios, 90 production batches, 608 flavoring samples, support vector machine, accurate quality management, accurate quality assessment, detecting physicochemical indicators, detect physicochemical indicators, machine learning timely, least angle regression, tobacco flavoring products, lssvm model achieved, 2 sup, dt ), least, nir spectroscopy combined, establish detection models, physicochemical indicators, machine learning, nir spectroscopy, lssvm ), partial least
-
8
Autoren: et al.
Quelle: The Proceedings of the International Conference on Power Engineering (ICOPE). 2021, :2021-0243
-
9
Autoren: et al.
Quelle: Water
Volume 15
Issue 4
Pages: 612Schlagwörter: TSM, 13. Climate action, landslide displacement prediction, 0211 other engineering and technologies, PSO-LSSVM model, 02 engineering and technology, Shuping landslide
Dateibeschreibung: application/pdf
-
10
Autoren:
Quelle: School of Environment, Science and Engineering Papers
-
11
Autoren: et al.
Quelle: Journal of environmental management [J Environ Manage] 2025 Jun; Vol. 386, pp. 125697. Date of Electronic Publication: 2025 May 12.
Publikationsart: Journal Article
Info zur Zeitschrift: Publisher: Academic Press Country of Publication: England NLM ID: 0401664 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-8630 (Electronic) Linking ISSN: 03014797 NLM ISO Abbreviation: J Environ Manage Subsets: MEDLINE
MeSH-Schlagworte: Cyanobacteria* , Water Quality* , Water Purification*/methods, Seasons ; Potassium Permanganate/chemistry ; Oxidation-Reduction ; Potassium Compounds
Full Text Finder
Nájsť tento článok vo Web of Science