Suchergebnisse - "Kobelkova, I.V."

  • Treffer 1 - 12 von 12
Treffer weiter einschränken
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Weitere Verfasser: L. E. Tabikhanova L. P. Osipova T. V. Churkina et al.

    Quelle: Vavilov Journal of Genetics and Breeding; Том 26, № 2 (2022); 188-195 ; Вавиловский журнал генетики и селекции; Том 26, № 2 (2022); 188-195 ; 2500-3259 ; 10.18699/VJGB-22-14

    Dateibeschreibung: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3295/1604; Ametov A.S., Kamynina L.L., Akhmedova Z.G. The clinical aspects of effectiveness of incretin therapy (Wnt-pathogenic path and polymorphism of gene TCF7L2). Rossiyskiy Meditsinskiy Zhurnal = Medical Journal of the Russian Federation. 2016;22(1):47-51. DOI 10.18821/0869-2106-2016-22-1-47-51. (in Russian); Anjum N., Jehangir A., Liu Y. Two TCF7L2 variants associated with type 2 diabetes in the Han nationality residents of China. J. Coll. Physicians Surg. Pak. 2018;28(10):794-797.; Asfandiyarova N.S. A review of mortality in type 2 diabetes mellitus. Sakharnyi Diabet = Diabetes Mellitus. 2015;18(4):12-21. DOI 10.14341/DM6846. (in Russian); Avzaletdinova D.S., Sharipova L.F., Kochetova O.V., Morugova T.V., Erdman V.V., Somova R.S., Mustafina O.E. The association of TCF7L2rs7903146 polymorphism with type 2 diabetes mellitus among Tatars of Bashkortostan. Sakharnyi Diabet = Diabetes Mellitus. 2016;19(2):119-124. DOI 10.14341/DM2004138-45. (in Russian); Bairova T.A., Dolgikh V.V., Kolesnikova L.I., Pervushina O.A. Nutriciogenetics and risk factors of cardiovascular disease: associated research in Eastern Siberia populations. Byulleten’ VSNTs SO RAMN = Bulletin of the East Siberian Scientific Center SB RAMS. 2013; 4(92):87-92. (in Russian); Baturin A.K., Sorokinа E.Yu., Pogozheva A.V., Keshabyants E.E., Kobelkova I.V., Kambarov A.O., Elizarova E.V., Tutelyan V.A. The association of rs993609 polymorphisms of gene FTO and rs659366 polymorphisms of gene UCP2 with obesity among Arctic Russian population. Voprosy Pitaniya = Problems of Nutrition. 2017;86(3): 32-39. (in Russian); Bennett C.N., Ross S.E., Longo K.A., Bajnok L., Hemati N., Johnson K.W., Harrison S.D., MacDougald O.A. Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 2002;277(34):30998-31004. DOI 10.1074/jbc.M204527200.; Bondar’ I.A., Filipenko M.L., Shabel’nikova O.Yu., Sokolova E.A. Rs7903146 variant of TCF7L2 gene and rs18012824 variant of PPARG2 gene (Pro12Ala) are associated with type 2 diabetes mellitus in Novosibirsk population. Sakharnyi Diabet = Diabetes Mellitus. 2013;4:17-22. DOI 10.14341/DM2013417-22. (in Russian); Cauchi S., El Achhab Y., Choquet H., Dina C., Krempler F., Weitgasser R., Nejjari C., Patsch W., Chikri M., Meyre D., Froguel P. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J. Mol. Med. 2007;85(7):777-782. DOI 10.1007/s00109-007 0203-4.; Cygankova D.P., Mulerova T.A., Ogarkov M.Yu., Saarela Ye.Yu., Barbarash O.L. Traditional lifestyle change as a reason for metabolic disorders risk increase in residents of Gornaya Shoriya. Consilium Medicum. 2018;20(5):66-70. DOI 10.26442/2075-1753_2018.5.66-71. (in Russian); Franceschini N., Shara N.M., Wang H., Voruganti V.S., Laston S., Haack K., Lee E.T., Best L.G., MacCluer J.W., Cohran B., Dyer T.D., Howard B.V., Cole S.A., North K.E., Umans J.G. The association of genetic variants of type 2 diabetes with kidney function. Kidney Int. 2012;82(2):220-225. DOI 10.1038/ki.2012.107.; Hallmark B., Karafet T.M., Hsieh P.H., Osipova L.P., Watkins J.C., Hammer M.F. Genomic evidence of local adaptation to climate and diet in indigenous Siberians. Mol. Biol. Evol. 2018;36(2):315-327. DOI 10.1093/molbev/msy211.; Han X., Luo Y., Ren Q., Zhang X., Wang F., Sun X., Zhou X., Ji L. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med. Genet. 2010;11:81. DOI 10.1186/1471-2350-11-81.; Haupt A., Thamer C., Heni M., Ketterer C., Machann J., Schick F., Machicao F., Stefan N., Claussen C.D., Häring H.U., Fritsche A., Staiger H. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes. 2010;59(3):747-750. DOI 10.2337/db09-1050.; Ievleva K.D., Bairova T.A., Sheneman E.A., Ayurova Zh.G., Bal’zhieva V.V., Novikova E.A., Bugun O.V., Rychkova L.V., Kolesnikova L.I. The protective effect of the G-allele of PPARG2 rs1801282 polymorphism against overweight and obesity in Mongoloid adolescents. Zhurnal Mediko-Biologicheskikh Issledovaniy = Journal of Medical and Biological Research. 2019;7(4):452-463. DOI 10.17238/issn2542-1298.2019.7.4.452. (in Russian); Katsoulis K., Paschou S.A., Hatzi E., Tigas S., Georgiou I., Tsatsoulis A. TCF7L2 gene variants predispose to the development of type 2 diabetes mellitus among individuals with metabolic syndrome. Hormones (Athens). 2018;17(3):359-365. DOI 10.1007/s42000-018-0047-z.; Kaya E.D., Arikoğlu H., Kayiş S.A., Öztürk O., Gönen M.S. Transcription factor 7-like 2 (TCF7L2) gene polymorphisms are strong predictors of type 2 diabetes among nonobese diabetics in the Turkish population. Turk. J. Med. Sci. 2017;47(1):22-28. DOI 10.3906/sag-1507-160.; Kichigin V.A., Kochemirova T.N., Akimova V.P. Ethnic peculiarities in prevalence of cardiovascular risk factors in urban population. Acta Medica Eurasica. 2017;4:16-23. (in Russian); Kurtanov Kh.A., Sydykova L.A., Pavlova N.I., Filippova N.P., Dodokhov V.V., Apsolikhova G.A., Solov’eva N.A., D’yakonova A.T., Neustroeva L.M., Varlamova M.A., Borisova N.V. Polymorphism of the adiponutrin gene (PNPLA3) in the indigenous inhabitants of the Republic of Sakha (Yakutia) with type 2 diabetes mellitus. Al’manakh Klinicheskoy Meditsiny = Almanac of Clinical Medicine. 2018;46(3):258-263. DOI 10.18786/2072-0505-2018-46-3-258-263. (in Russian); Mel’nikova E.S., Rymar O.D., Ivanova A.A., Mustafina S.V., Shapkina M.Ju., Bobak M., Maljutina S.K., Voevoda M.I., Maximov V.N. Association of polymorphisms of genes TCF7L2, FABP2, KCNQ1, ADIPOQ with the prognosis of the development of type 2 diabetes mellitus. Terapevticheskiy arkhiv = Therapeutic Archive. 2020;92(10):40-47. DOI 10.26442/00403660.2020.10.000393. (in Russian); Melzer D., Murray A., Hurst A.J., Weedon M.N., Bandinelli S., Corsi A.M., Ferrucci L., Paolisso G., Guralnik J.M., Frayling T.M. Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med. 2006;4:34. DOI 10.1186/1741-7015-4-34.; Nobrega M.A. TCF7L2 and glucose metabolism: time to look beyond the pancreas. Diabetes. 2013;62(3):706-708. DOI 10.2337/db12-1418.; Orlov P.S., Kulikov I.V., Ustinov S.N., Gafarov V.V., Malyutina S.K., Romashchenko A.G., Voyevoda M.I., Maksimov V.N. Association analysis of some single nucleotide polymorphism markers of the second type of diabetes with myocardial infarction. Byulleten’ SO RAMN = Bulletin of Siberian Branch of Russian Academy of Medical Sciences. 2011;31(5):19-24. (in Russian); Ostaptseva A.V., Shabaldin A.V., Akhmatianova V.R., Minina V.I., Glushkov A.N., Druzhinin V.G., Zorkoltseva I.V., Shabaldin E.V., Glushkova O.A., Makarchenko O.S., Ageyeva T.N. Molecular genetic analysis of interleukin 4 gene polymorphism among Teleutians, Shorians, and Caucasians of Kemerovo region. Meditsinskaya Immunologiya = Medical Immunology. 2006;8(5-6):737-740. (in Russian); Ovsyannikova O.V., Podkhomutnikov V.M., Kolbasko A.V., Luzina F.A., Gus’kova E.V. Cardiovascular disease in rural Kuzbass aborigines – Teleut. Rossiyskiy Kardiologicheskiy Zhurnal = Russian Journal of Cardiology. 2007;6:59-62. (in Russian); Potapov V.A., Nosikov V.V., Shamkhalova M.N., Shestakova M.V., Smetanina S.A., Bel’chikova L.N., Suplotova L.A. TCF7L2 rs12255372 and SLC30A8 rs13266634 confer susceptibility to type 2 diabetes in a Russian population. Russ. J. Genet. 2010;46(8):1001-1008. DOI 10.1134/S1022795410080132.; Rosales-Reynoso M.A., Arredondo-Valdez A.R., Juárez-Vázquez C.I., Wence-Chavez L.I., Barros-Núñez P., Gallegos-Arreola M.P., Flores- Martínez S.E., Morán-Moguel M.C., Sánchez-Corona J. TCF7L2 and CCND1 polymorphisms and its association with colorectal cancer in Mexican patients. Cell Mol. Biol. 2016;62(11):13-20. DOI 10.14715/cmb/2016.62.11.3.; Saxena R., Gianniny L., Burtt N.P., Lyssenko V., Giuducci C., Sjögren M., Florez J.C., Almgren P., Isomaa B., Orho-Melander M., Lindblad U., Daly M.J., Tuomi T., Hirschhorn J.N., Ardlie K.G., Groop L.C., Altshuler D. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes. 2006;55(10):2890-2895. DOI 10.2337/db06-0381.; Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., Boutin P., Vincent D., Belisle A., Hadjadj S., Balkau B., Heude B., Charpentier G., Hudson T.J., Montpetit A., Pshezhetsky A.V., Prentki M., Posner B.I., Balding D.J., Meyre D., Polychronakos C., Froguel P. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881-885. DOI 10.1038/nature05616.; Smetanina S.A. Molecular-genetic and hormonal-metabolic associations among women of the Russian population of reproductive age with obesity and early menarche. Meditsinskaya Nauka i Obrazovaniye Urala = Medical Science and Education in Ural. 2015; 2(1):126-129. (in Russian); Tabikhanova L.E., Osipova L.P., Voronina E.N., Bragin A.O., Filipenko M.L. Polymorphism of lipid exchange genes in some populations of South and East Siberia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(8):1011-1019. DOI 10.18699/VJ19.578.; The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422): 56-65. DOI 10.1038/nature11632.; Timpson N.J., Lindgren C.M., Weedon M.N., Randall J., Ouwehand W.H., Strachan D.P., Rayner N.W., Walker M., Hitman G.A., Doney A.S., Palmer C.N., Morris A.D., Hattersley A.T., Zeggini E., Frayling T.M., McCarthy M.I. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes. 2009;58(2):505-510. DOI 10.2337/db08-0906.; Trifonova E.A., Popovich A.A., Bocharova A.V., Vagaitseva K.V., Stepanov V.A. The role of natural selection in the formation of the genetic structure of populations by SNP markers in association with body mass index and obesity. Mol. Biol. 2020;54(3):349-360. DOI 10.1134/S0026893320030176.; Tsyretorova S.S., Bardymova T.P., Protasov K.V., Donirova O.S., Mistyakov M.V. Ethnic features of diabetes mellitus and coronary heart disease. Sibirskiy Meditsinskiy Zhurnal (Irkutsk) = Siberian Medical Journal (Irkutsk). 2015;136(5):15-21. (in Russian); Vikulova O.K., Zheleznyakova A.V., Lebedeva N.O., Nikitin A.G., Nosikov V.V., Shestakova M.V. Genetic factors in the development of kidney chronic disease in patients with diabetes mellitus. Russ. J. Genet. 2017;53(4):420-432. DOI 10.1134/S1022795417030140.; Xi B., Takeuchi F., Meirhaeghe A., Kato N., Chambers J.C., Morris A.P., Cho Y.S., Zhang W., Mohlke K.L., Kooner J.S., Shu X.O., Pan H., Tai E.S., Pan H., Wu J.Y., Zhou D., Chandak G.R., DIAGRAM Consortium, AGEN-T2D Consortium, SAT2D Consortium. Associations of genetic variants in/near body mass index-associated genes with type 2 diabetes: a systematic meta-analysis. Clin. Endocrinol. (Oxf .). 2014;81(5):702-710. DOI 10.1111/cen.12428.; Zhang M., Tang M., Fang Y., Cui H., Chen S., Li J., Xiong H., Lu J., Gu D., Zhang B. Cumulative evidence for relationships between multiple variants in the VTI1A and TCF7L2 genes and cancer incidence. Int. J. Cancer. 2018;142(3):498-513. DOI 10.1002/ijc.31074.; https://vavilov.elpub.ru/jour/article/view/3295

  9. 9

    Quelle: Food systems; Vol 4, No 4 (2021); 278-285 ; Пищевые системы; Vol 4, No 4 (2021); 278-285 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2021-4-4

    Dateibeschreibung: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/136/162; Somoza, V., Wenzel, E., Weiß, C., Clawin-Rädecker, I., Grübel, N., Erbersdobler, H. F. (2006). Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats. Molecular Nutrition and Food Research, 50(9), 833–841. https://doi.org/10.1002/mnfr.200600021; Hellwig, M., Henle, T. (2014). Baking, ageing, diabetes: A short history of the maillard reaction. Angewandte Chemie — International Edition, 53(39), 10316–10329. https://doi.org/10.1002/anie.201308808; de Oliveira, F. C., Coimbra, J. S. D. R., de Oliveira, E. B., Zuñiga, A. D. G., Rojas, E. E. G. (2016). Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review. Critical Reviews in Food Science and Nutrition, 56(7), 1108–1125. https://doi.org/10.1080/10408398.2012.755669; Teodorowicz, M., Van Neerven, J., Savelkoul, H. (2017). Food processing: The influence of the Maillard reaction on immunogenicity and allergenicity of food proteins. Nutrients, 9(8), Article 835. https://doi.org/10.3390/nu9080835; Xiang, J., Liu, F., Wang, B., Chen, L., Liu, W., Tan, S. (2021). A literature review on Maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: Advantages, disadvantages, and avoidance strategies. Foods, 10(9), Article 1998. https://doi.org/10.3390/foods10091998; Newton, A. E., Fairbanks, A. J., Golding, M., Andrewes, P., Gerrard, J. A. (2012). The role of the Maillard reaction in the formation of flavour compounds in dairy products — not only a deleterious reaction but also a rich source of flavour compounds. Food and Function, 3(12), 1231–1241. https://doi.org/10.1039/c2fo30089c; Nooshkam, M., Varidi, M., Bashash, M. (2019). The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644–660. https://doi.org/10.1016/j.foodchem.2018.09.083; Oliver, C. M., Melton, L. D., Stanley, R. A. (2006). Creating proteins with novel functionality via the maillard reaction: A review. Critical Reviews in Food Science and Nutrition, 46(4), 337–350. https://doi.org/10.1080/10408690590957250; Abd El-Salam, M. H., El-Shibiny, S. (2018). Glycation of whey proteins: Technological and nutritional implications. International Journal of Biological Macromolecules, 112, 83–92. https://doi.org/10.1016/j.ijbiomac.2018.01.114; Sedaghat Doost, A., Nikbakht Nasrabadi, M., Wu, J., A’yun, Q., Van der Meeren, P. (2019). Maillard conjugation as an approach to improve whey proteins functionality: A review of conventional and novel preparation techniques. Trends in Food Science and Technology, 91, 1–11. https://doi.org/10.1016/j.tifs.2019.06.011; Seo, C. W., Yoo, B. (2021). Preparation of milk protein isolate/κcarrageenan conjugates by Maillard reaction in wet-heating system and their application to stabilization of oil-in-water emulsions. LWT, 139, Article 110542. https://doi.org/10.1016/j.lwt.2020.110542; Meydani, B., Vahedifar, A., Askari, G., Madadlou, A. (2019). Influence of the Maillard reaction on the properties of cold-set whey protein and maltodextrin binary gels. International Dairy Journal, 90, 79–87. https://doi.org/10.1016/j.idairyj.2018.11.009; Andrade, M. A., Ribeiro-Santos, R., Guerra, M., Sanches-Silva, A. (2019). Evaluation of the oxidative status of salami packaged with an active whey protein film. Foods, 8(9), Article 387. https://doi.org/10.3390/foods8090387; Spanneberg, R., Salzwedel, G., Glomb, M. A. (2012). Formation of early and advanced Maillard reaction products correlates to the ripening of cheese. Journal of Agricultural and Food Chemistry, 60(2), 600–607. https://doi.org/10.1021/jf204079f; Erbersdobler, H. F., Somoza, V. (2007). Forty years of furosine — forty years of using Maillard reaction products as indicators of the nutritional quality of foods. Molecular Nutrition and Food Research, 51(4), 423–430. https://doi.org/10.1002/mnfr.200600154; García, M. M., Seiquer, I., Delgado-Andrade, C., Galdó, G., Navarro, M. P. (2009). Intake of Maillard reaction products reduces iron bioavailability in male adolescents. Molecular Nutrition and Food Research, 53(12), 1551–1560. https://doi.org/10.1002/mnfr.200800330; ALjahdali, N., Carbonero, F. (2019). Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system. Critical Reviews in Food Science and Nutrition, 59(3), 474–487. https://doi.org/10.1080/10408398.2017.1378865; Wang, Z., Jiang, Y., Liu, N., Ren, L., Zhu, Y., An, Y. et al. (2012). Advanced glycation end-product N e{open}- carboxymethyl-lysine accelerates progression of atherosclerotic calcification in diabetes. Atherosclerosis, 221(2), 387–396. https://doi.org/10.1016/j.atherosclerosis.2012.01.019; Li, J., Liu, D., Sun, L., Lu, Y., Zhang, Z. (2012). Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. Journal of the Neurological Sciences, 317(1–2), 1–5. https://doi.org/10.1016/j.jns.2012.02.018; Rao, Q., Jiang, X., Li, Y., Samiwala, M., Labuza, T. P. (2018). Can glycation reduce food allergenicity? Journal of Agricultural and Food Chemistry, 66(17), 4295–4299. https://doi.org/10.1021/acs.jafc.8b00660; Yang, S. -Y., Kim, S. -W., Kim, Y., Lee, S. -H., Jeon, H., Lee, K. -W. (2015). Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology. Food Chemistry, 176, 420–425. https://doi.org/10.1016/j.foodchem.2014.12.090; Liu, E. G., Yin, X., Swaminathan, A., Eisenbarth, S. C. (2021). Antigenpresenting cells in food tolerance and allergy. Frontiers in Immunology, 11, Article 616020. https://doi.org/10.3389/fimmu.2020.616020; Bøgh, K. L., Madsen, C. B. (2016). Food allergens: Is there a correlation between stability to digestion and allergenicity? Critical Reviews in Food Science and Nutrition, 56(9), 1545–1567. https://doi.org/10.1080/10408398.2013.779569; Teodorowicz, M., Hendriks, W. H., Wichers, H. J., Savelkoul, H. F. J. (2018). Immunomodulation by processed animal feed: The role of maillard reaction products and advanced glycation end-products (AGEs). Frontiers in Immunology, 9(SEP), Article 2088. https://doi.org/10.3389/fimmu.2018.02088; Bastos, D. H. M., Gugliucci, A. (2015). Contemporary and controversial aspects of the Maillard reaction products. Current Opinion in Food Science, 1(1), 13–20. https://doi.org/10.1016/j.cofs.2014.08.001; Sanz, M. L., Corzo-Martínez, M., Rastall, R. A., Olano, A., Moreno, F. J. (2007). Characterization and in vitro digestibility of bovine β-lactoglobulin glycated with galactooligosaccharides. Journal of Agricultural and Food Chemistry, 55(19), 7916–7925. https://doi.org/10.1021/jf071111l; Zhang, Z., Li, Z., Lin, H. (2021). Reducing the allergenicity of shrimp tropomyosin and allergy desensitization based on glycation modification. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.1c03953 (unpublished data); Xu, L., Gong, Y., Gern, J. E., Ikeda, S., Lucey, J. A. (2018). Glycation of whey protein with dextrans of different molar mass: Effect on immunoglobulin E-binding capacity with blood sera obtained from patients with cow milk protein allergy. Journal of Dairy Science, 101(8), 6823–6834. https://doi.org/10.3168/jds.2017–14338; Maleki, S. J., Chung, S. -Y., Champagne, E. T., Raufman, J. -P. (2000). The effects of roasting on the allergenic properties of peanut proteins. Journal of Allergy and Clinical Immunology, 106(4), 763–768. https://doi.org/10.1067/mai.2000.109620; Liu, F., Teodorowicz, M., Van Boekel, M. A. J. S., Wichers, H. J., Hettinga, K. A. (2016). The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands. Food and Function, 7(1), 239–249. https://doi.org/10.1039/c5fo00718f; De Martinis, M., Sirufo, M. M., Suppa, M., Ginaldi, L. (2020). New perspectives in food allergy. International Journal of Molecular Sciences, 21(4), Article 1474. https://doi.org/10.3390/ijms21041474; Gupta, R. K., Gupta, K., Sharma, A., Das, M., Ansari, I. A., Dwivedi, P. D. (2018). Maillard reaction in food allergy: Pros and cons. Critical Reviews in Food Science and Nutrition, 58(2), 208–226. https://doi.org/10.1080/10408398.2016.1152949; Liang, Z., Chen, X., Li, L., Li, B., Yang, Z. (2019). The fate of dietary advanced glycation end products in the body: From oral intake to excretion. Critical Reviews in Food Science and Nutrition, 60(20), 3475–3491. https://doi.org/10.1080/10408398.2019.1693958; Hegele, J., Buetler, T., Delatour, T. (2008). Comparative LC–MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products. Analytica Chimica Acta, 617(1–2), 85–96. https://doi.org/10.1016/j.aca.2007.12.027; Ling, B., Tang, J., Kong, F., Mitcham, E. J., Wang, S. (2015). Kinetics of food quality changes during thermal processing: A review. Food and Bioprocess Technology, 8(2), 343–358. https://doi.org/10.1007/s11947–014–1398–3; Collin, M., Bigley, V. (2018). Human dendritic cell subsets: An update. Immunology, 154(1), 3–20 https://doi.org/10.1111/imm.12888; Jaiswal, N., Agrawal, S., Agrawal, A. (2019). High fructose-induced metabolic changes enhance inflammation in human dendritic cells. Clinical and Experimental Immunology, 197(2), 237–249. https://doi.org/10.1111/cei.13299; Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R. et al. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911–916.e12. https://doi.org/10.1016/j.jada.2010.03.018; Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2(1), 411–429. https://doi.org/10.1016/j.redox.2013.12.016; Saleh, A., Smith, D. R., Tessler, L., Mateo, A. R., Martens, C., Schartner, E. et al. (2013). Receptor for advanced glycation end-products (RAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons. Experimental Neurology, 249, 149–159. https://doi.org/10.1016/j.expneurol.2013.08.018; Cai, W., Ramdas, M., Zhu, L., Chen, X., Striker, G. E., Vlassara, H. (2012). Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proceedings of the National Academy of Sciencesof the United States of America, 109(39), 15888–15893. https://doi.org/10.1073/pnas.1205847109; Ilchmann, A., Burgdorf, S., Scheurer, S., Waibler, Z., Nagai, R., Wellner, A. et al. (2010). Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: Role of macrophage scavenger receptor class A type I and II. The Journal of Allergy and Clinical Immunology, 125(1–3), 175–183.e11. https://doi.org/10.1016/j.jaci.2009.08.013; Maillard-Lefebvre, H., Boulanger, E., Daroux, M., Gaxatte, C., Hudson, B. I., Lambert, M. (2009). Soluble receptor for advanced glycation end products: A new biomarker in diagnosis and prognosis of chronic inflammatory diseases. Rheumatology (Oxford, England), 48(10), 1190–1196. https://doi.org/10.1093/rheumatology/kep199; Jiménez-Saiz, R., Belloque, J., Molina, E., López-Fandiño, R. (2011). Human immunoglobulin e (IgE) binding to heated and glycated ovalbumin and ovomucoid before and after in vitro digestion. Journal of Agricultural and Food Chemistry, 59(18), 10044–10051https://doi.org/10.1021/jf2014638; Taheri-Kafrani, A., Gaudin, J.-C., Rabesona, H., Nioi, C., Agarwal, D., Drouet, M. et al. (2009). Effects of heating and glycation of β-lactoglobulin on its recognition by ige of sera from cow milk allergy patients. Journal of Agricultural and Food Chemistry, 57(11), 4974–4982. https://doi.org/10.1021/jf804038t; Bu, G., Lu, J., Zheng, Z., Luo, Y. (2009). Influence of maillard reaction conditions on the antigenicity of bovine α-lactalbumin using response surface methsodology. Journal of the Science of Food and Agriculture, 89(14), 2428–2434. https://doi.org/10.1002/jsfa.3741; Heilmann, M., Wellner, A., Gadermaier, G., Ilchmann, A., Briza, P., Krause, M. et al. (2014). Ovalbumin modified with pyrraline, a maillard reaction product, shows enhanced T-cell immunogenicity. Journal of Biological Chemistry, 289(11), 7919–7928. https://doi.org/10.1074/jbc.M113.523621; Cucu, T., De Meulenaer, B., Bridts, C., Devreese, B., Ebo, D. (2012). Impact of thermal processing and the maillard reaction on the basophil activation of hazelnut allergic patients. Food and Chemical Toxicology, 50(5), 1722–1728. https://doi.org/10.1016/j.fct.2012.02.069; Han, X.-Y., Yang, H., Rao, S.-T., Liu, G.-Y., Hu, M.-J., Zeng, B.-C. et al. (2018). The Maillard reaction reduced the sensitization of tropomyosin and arginine kinase from Scylla paramamosain, simultaneously. Journal of Agricultural and Food Chemistry, 66(11), 2934–2943. https://doi.org/10.1021/acs.jafc.7b05195; Zhang, Z., Li, X. -M., Xiao, H., Nowak-Wegrzyn, A., Zhou, P. (2020). Insight into the allergenicity of shrimp tropomyosin glycated by functional oligosaccharides containing advanced glycation end products. Food Chemistry, 302, Article 125348. https://doi.org/10.1016/j.foodchem.2019.125348; Zhao, Y.-J., Cai, Q.-F., Jin, T., Zhang, L.-J., Fei, D.-X., Liu, G.-M., Cao, M.-J. (2017). Effect of Maillard reaction on the structural and immunological properties of recombinant silver carp parvalbumin. LWT — Food Science and Technology, 75, 25–33. https://doi.org/10.1016/j.lwt.2016.08.049; Kobelkova, M.S., Korosteleva, M.M., Kobelkova, I.V. (2021). Applied aspects of the use of Maillard reaction products in the development of specialized food products for the nutrition of athletes. Food systems, 4(3S), 137–141. https://doi.org/10.21323/2618–9771–2021–4–3S-137–141; Yang, Z. -H., Li, C., Li, Y. -Y., Wang, Z. -H. (2013). Effects of maillard reaction on allergenicity of buckwheat allergen fag t 3 during thermal processing. Journal of the Science of Food and Agriculture, 93(6), 1510–1515. https://doi.org/10.1002/jsfa.5928; Warren, C.M., Jiang, J., Gupta, R.S. (2020). Epidemiology and burden of food allergy. Current Allergy and Asthma Reports, 20(2), Article 6. https://doi.org/10.1007/s11882–020–0898–7; Warren, C. M., Turner, P. J., Chinthrajah, R. S., Gupta, R. S. (2021). Advancing food allergy through epidemiology: Understanding and addressing disparities in food allergy management and outcomes. Journal of Allergy and Clinical Immunology: In Practice, 9(1), 110–118. https://doi.org/10.1016/j.jaip.2020.09.064; Smith, P. K., Masilamani, M., Li, X. -M., Sampson, H. A. (2017). The false alarm hypothesis: Food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. Journal of Allergy and Clinical Immunology, 139(2), 429–437. https://doi.org/10.1016/j.jaci.2016.05.040; Wei, Q., Liu, T., Sun, D. -W. (2018). Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends in Food Science and Technology, 82, 32–45. https://doi.org/10.1016/j.tifs.2018.09.020; Takeuchi, M., Takino, J., Furuno, S., Shirai, H., Kawakami, M., Muramatsu, M. et al. (2015). Assessment of the concentrations of various advanced glycation end-products in beverages and foods that are commonly consumed in Japan. Plos One, 10(3), Article e0118652. https://doi.org/10.1371/journal.pone.0118652; Hull, G. L. J., Woodside, J. V., Ames, J. M., Cuskelly, G. J. (2012). N ε (carboxymethyl) lysine content of foods commonly consumed in a Western style diet. Food Chemistry, 131(1), 170–174. https://doi.org/10.1016/j.foodchem.2011.08.055; Pouillart, P., Mauprivez, H., Ait-Ameur, L., Cayzeele, A., Lecerf, J., Tessier, F. J. et al. (2008). Strategy for the study of the health impact of dietary Maillard products in clinical studies: The example of the ICARE clinical study on healthy adults. Annals of the New York Academy of Sciences, 1126, 173–176. https://doi.org/10.1196/annals.1433.040; Zhang, Z., Li, D. (2018). Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: Evidence from two vertebrates. Microbiome, 6(1), 99. https://doi.org/10.1186/s40168–018–0471-y; Koliada, A., Syzenko, G., Moseiko, V., Budovska, L., Puchkov, K., Perederiy, V. et al. (2017). Association between body mass index and Firmicutes/ Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, 17(1), Article 120. https://doi.org/10.1186/s12866–017–1027–1; Mao, Z., Ren, Y., Zhang, Q., Dong, S., Han, K., Feng, G. et al. (2019). Glycated fish protein supplementation modulated gut microbiota composition and reduced inflammation but increased accumulation of advanced glycation end products in high-fat diet fed rats. Food and Function, 10(6), 3439–3451. https://doi.org/10.1039/c9fo00599d; Yacoub, R., Nugent, M., Cai, W., Nadkarni, G. N., Chaves, L. D., Abyad, S. et al. (2017). Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS One, 12(9), Article e0184789. https://doi.org/10.1371/journal.pone.0184789; Seiquer, I., Rubio, L. A., Peinado, M. J., Delgado-Andrade, C., Navarro, M. P. (2014). Maillard reaction products modulate gut microbiota composition in adolescents. Molecular Nutrition and Food Research, 58(7), 1552-1560. https://doi.org/10.1002/mnfr.201300847; Luévano-Contreras, C., Garay-Sevilla, M. E., Wrobel, K., Malacara, J. M., Wrobel, K. (2012). Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. Journal of Clinical Biochemistry and Nutrition, 52(1), 12–40. https://doi.org/10.3164/jcbn.12–40; Vlassara, H., Striker, G. E. (2011). AGE restriction in diabetes mellitus: A paradigm shift. Nature Reviews Endocrinology, 7(9), 526–539. https://doi.org/10.1038/nrendo.2011.74; Di Pino, A., Currenti, W., Urbano, F., Mantegna, C., Purrazzo, G., Piro, S. et al. (2016). Low advanced glycation end product diet improves the lipid and inflammatory profiles of prediabetic subjects. Journal of Clinical Lipidology, 10(5), 1098–1108. https://doi.org/10.1016/j.jacl.2016.07.001; Poulsen, M. W., Bak, M. J., Andersen, J. M., Monošík, R., Giraudi-Futin, A. C., Holst, J. J. et al. (2014). Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals. European Journal of Nutrition, 53(2), 661–672. https://doi.org/10.1007/s00394–013–0574-y; Macías-Cervantes, M. H., Rodríguez-Soto, J. M. D., Uribarri, J., DíazCisneros, F. J., Cai, W., Garay-Sevilla, M. E. (2015). Effect of an advanced glycation end product-restricted diet and exercise on metabolic parameters in adult overweight men. Nutrition, 31(3), 446–451. https://doi.org/10.1016/j.nut.2014.10.004; Munekata, P.E.S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F.J., Mallikarjunan, K. et al. (2020). Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods, 9(3), Article 288. https://doi.org/10.3390/foods9030288; Khan, M., Liu, H., Wang, J., Sun, B. (2019). Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Research International, 130, Article 108933. https://doi.org/10.1016/j.foodres.2019.108933; Abdallah, H. M., El-Bassossy, H., Mohamed, G. A., El-Halawany, A. M., Alshali, K. Z., Banjar, Z. M. (2016). Phenolics from Garcinia mangostana inhibit advanced glycation endproducts formation: Effect on amadori products, cross-linked structures and protein thiols. Molecules, 21(2), Article 251. https://doi.org/10.3390/molecules21020251; Zhu, R., Wang, C., Zhang, L., Wang, Y., Chen, G., Fan, J. et al. (2019). Pectin oligosaccharides from fruit of Actinidia arguta: Structure-activity relationship of prebiotic and antiglycation potentials. Carbohydrate Polymers, 217, 90–97. https://doi.org/10.1016/j.carbpol.2019.04.032; Sharma, C., Kaur, A., Thind, S. S., Singh, B., Raina, S. (2015). Advanced glycation end-products (AGEs): an emerging concern for processed food industries. Journal of Food Science and Technology, 52(12), 7561–7576. https://doi.org/10.1007/s13197–015–1851-y; Zhang, Q., Wang, Y., Fu, L. (2020). Dietary advanced glycation end-products: Perspectives linking food processing with health implications. Comprehensive Reviews in Food Science and Food Safety, 19(5), 559–2587. https://doi.org/10.1111/1541–4337.12593; https://www.fsjour.com/jour/article/view/136

  10. 10
  11. 11
  12. 12