Výsledky vyhľadávania - "K, Ashok"

Upresniť hľadanie
  1. 1
  2. 2
  3. 3

    Zdroj: Food systems; Vol 7, No 2 (2024); 312-320 ; Пищевые системы; Vol 7, No 2 (2024); 312-320 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-2

    Popis súboru: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/485/312; Hanahan, D., Weinberg, R.A. (2000). The Hallmarks of Cancer. Cell, 100(1), 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9; Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660; Yabluchanskiy, A, Ma, Y, Iyer, R.P., Hall, M.E., Lindsey, M.L. (2013). Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology, 28(6), 391-403. https://doi.org/10.1152/physiol.00029.2013; Greenlee, K.J., Corry, D.B., Engler, D.A., Matsunami, R.K., Tessier, P., Cooc, R.G. et al. (2006). Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. The Journal of Immunoljgy, 177(10), 7312-7321. https://doi.org/10.4049/jimmunol.177.10.7312; Khandia, R, Munjal, A. (2020). Interplay between inflammation and cancer. Chapter in a book: Advances in Protein Chemistry and Structural Biology, 119, 199-245. https://doi.org/10.1016/bs.apcsb.2019.09.004; Kessenbrock, K., Plaks, V., Werb, Z. (2010). Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 141(1), 52-67. https://doi.org/10.1016/j.cell.2010.03.015; Quintero-Fabian, S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J.C., Arana-Argae, V., Lara-Riegos, J. et al. (2019). Role of matrix metalloproteinases in angiogenesis and cancer. Frontiers in Oncology, 9, Article 1370. https://doi.org/10.3389/fonc.2019.01370; Nelson, A. R., Fingleton, B., Rothenberg, M. L., Matrisian, L. M. (2000). Matrix metalloproteinases: Biologic activity and clinical implications. Journal of Clinical Oncology, 18(5), 1135-1149. https://doi.org/10.1200/jco.2000.18.5.1135; Merdad, A., Karim, S., Schulten, H. J., Dallol, A., Buhmeida, A., Al-Thubaity, F. et al. (2014). Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis. Anticancer Research, 34(3), 1355-1366.; Meng, Q., Liang, C., Hua, J., Zhang, B., Liu, J., Zhang, Y. et al. (2020). A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance: functional validation and clinical significance. Theranostics, 10(9), 3967-3979. https://doi.org/10.7150/thno.40566; Li, K., Zhang, Z., Mei, Y., Yang, Q., Qiao, S., Ni, C. et al. (2021). Metallothionein-1G suppresses pancreatic cancer cell stemness by limiting activin A secretion NF-KB inhibition. Theranostics, 11(7), 3196-2212. https://doi.org/10.7150/thno.51976; Lindenmeyer, F., Legrand, Y., Menashi, S. (1997). Upregulation of MMP-9 expression in MDA-MB231 tumor cells by platelet granular membrane. FEBS Letters, 418(1-2), 19-22. https://doi.org/10.1016/s0014-5793(97)01336-7; Mishra, S. R., Nandhakumar, P., Yadav, K. P., Barik, S., Kumar, A., Saini, M. et al. (2017). In vitro analysis of alizarin as novel therapeutic agent for murine breast cancer. The Pharma Innovation Journal, 6(10), 345-350.; Ekowati, J., Diyah, N. W., Nofianti, K. A., Hamid, I. S., Siswandono (2018). Mo-lecular Docking of Ferulic Acid Derivatives on P2Y12 Receptor and their ADMET Prediction. Journal of Mathematical and Fundamental Sciences, 50(2), 203-219. https://doi.org/10.5614/j.math.fund.sci.2018.50.2.8; Kamath, V., Pai, A. (2017). Application of molecular descriptors in modern computational drug design-an overview. Research Journal of Pharmacy and Technology, 10(9), 3237-3241. http://doi.org/10.5958/0974-360X.2017.00574.1; Habeela, J.N., Maruga, R.M.K.M. (2018). In silico molecular docking studies on the chemical constituents of clerodendrum phlomidis for its cytotoxic potential against breast cancer markers. Research Journal of Pharmacy and Technology, 11(4), Article 1612-1618. http://doi.org/10.5958/0974-360X.2018.00300.1; Hardjono, S. (2012). Modification of the structure of 1 — (benzoyloxy) ureaand quantitative relationship of its structure-cytotoxic activity. Author's abstract of the thesis. Universitas Airlangga, Indonesia, 2012. (In Indonesian); Hardjono, S., Siswodihardjo, S., Pramono, P., Darmanto, W. (2016). Quantitative structure-cytotoxic activity relationship 1-(benzoyloxy) urea and its derivative. Current Drug Discovery Technologies, 13(2), 101-108. https://doi.org/10.2174%2F1570163813666160525112327; Pinzi, L., Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), Article 4331. https://doi.org/10.3390/ijms2018433; Park, K. D., Lee, S. G., Kim, S. U., Kim, S. H., Sun, W. S., Cho, S. J. et al. (2004). Anticancer activity of 3-O-acyl and alkyl-(-)-epicatechin derivatives. Bioorganic and Medicinal Chemistry Letters, 14(20), 5189-5192. https://doi.org/10.1016/j.bmcl.2004.07.063; Hoque, I., Chatterjee, A., Bhattacharya, S., Biswas, R. (2017). An approach of computer-aided drug design (CADD) tools for in silico pharmaceutical drug design and development. International Journal of Advanced Research in Biological Sciences, 4(2), 60-71. http://doi.org/10.22192/ijarbs.2017.04.02.009; Abdel-Ilah, L., Veljovic, E., Gurbeta, L., Badnjevic, A. (2017). Applications of QSAR study in drug design. International Journal of Engineering Research and Technology (IJERT), Vol. 6(6), 582-587.; Verma, J., Khedkar, V. M., Coutinho, E. C. (2010). 3D-QSAR in drug design-a review. Current Topics in Medicinal Chemistry, 10(1), 95-115. https://doi.org/10.2174/156802610790232260; Pathan, S., Ali, S. M., Shrivastava, M. (2016). Quantitative structure activity relationship and drug design: A review. International Journal of Research in Biosciences, 5(4), 1-5.; Pires, D. E. V., Blundell, T. L., Ascher, D. B. (2015). pkCSM: Predicting small-mol-ecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104; Pagadala, N. S., Syed, K., Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91-102. https://doi.org/10.1007/s12551-016-0247-1; Ramirez, D., Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), Article 1038. https://doi.org/10.3390/molecules23051038; Patlewicz, G., Jeliazkova, N., Safford, R. J., Worth, A. P., Aleksiev, B. (2008). An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR and QSAR in Environmental Researc, 19(5-6), 495-524. https://doi.org/10.1080/10629360802083871; McMurry, J., E., Fay, R., C. (2012). Chemistry. Boston: Prentice Hall, 2012.; Klebe, G. (2013). Protein-Ligand Interactions as the Basis for Drug Action. Chapter in a book: Drug Design. Springer, Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-17907-5_4; Grogan, S, Preuss, C.V. (2023). Pharmacokinetics. Chapter in a book: StatPearls [Internet]. StatPearls Publishing LLC., 2023.; Paul, A. (2019). Drug Absorption and Bioavailability. Chapter in a book: Introduction to Basics of Pharmacology and Toxicology. Springer, Singapore, 2019. https://doi.org/10.1007/978-981-32-9779-1; Chevillard, F., Lagorce, D., Reynes, C., Villoutreix, B. O., Vayer, P., Miteva, M. A. (2012). In silico prediction of aqueous solubility: A multimodel protocol based on chemical similarity. Molecular Pharmaceutics, 9(11), 3127-3135. https://doi.org/10.1021/mp300234q; Gleeson, M. P. (2008). Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, 51(4), 817-834. https://doi.org/10.1021/jm701122q; Currie, G. M. (2018). Pharmacology, part 2: Introduction to pharmacokinetics. Journal of Nuclear Medicine Technology, 46(3), 221-230. https://doi.org/10.2967/jnmt.117.199638; Smith, D. A., Beaumont, K., Maurer, T. S., Di, L. (2015). Volume of distribution in drug design. Miniperspective. Journal of Medicinal Chemistry, 58(15), 5691-5698. https://doi.org/10.1021/acs.jmedchem.5b00201; Jeffrey, P., Summerfield, S. (2010). Assessment of the blood-brain barrier in CNS drug discovery. Neurobiology of Disease, 37(1), 33-37. https://doi.org/10.1016/j.nbd.2009.07.033; Wilde, M., Pichini, S., Pacifici, R., Tagliabracci, A., Busardo, F. P., Auwarter, V. et al. (2019). Metabolic Pathways and Potencies of New Fentanyl Analogs. Frontiers in pharmacology, 10, Article 238. https://doi.org/10.3389%2Ffphar.2019.00238; Rizzieri, D., Paul, B., Kang, Y. (2019). Metabolic alterations and the potential for targeting metabolic pathways in the treatment of multiple myeloma. Journal of Cancer Metastasis and Treatment, 5, 26. https://doi.org/10.20517/2394-4722.2019.05; Garza, A. Z., Park, S. B., Kocz, R. (2023). Drug Elimination. Chapter in a book: StatPearls [Internet]. StatPearls Publishing LLC., 2023.; Herdiansyah, M. A., Ansori, A. N. M., Kharisma V. D., Alifiansyah, M. R. T., Anggraini, D., Priyono, Q. A. P., Yusniasari, P. A., Fetty, A. J. T., Zainul, R., Rebezov, M., Kolesnik, E., Maksimiuk, N. (2024). In silico study of cladosporol and its acyl derivatives as anti-breast cancer against alpha-estrogen receptor. Biosaintifika, 15(1), 1-13.; Zainul, R., Kharisma, V. D., Ciuputri, P., Ansori, A. N. M., Herdiansyah, M. A., Sahadewa, S., Durry, F. D. (2024). Antiretroviral activity from elderberry (Sambucus nigra L.) flowers against HIV-2 infection via reverse transcriptase inhibition: A viroinformatics study. Healthcare in Low-resource Settings, 1(2024), 1-12. https://doi.org/10.4081/hls.2024.12047; Krihariyani, D., Haryanto, E., Sasongkowati, R. (2021). in silico analysis of antiviral activity and pharmacokinetic prediction of brazilein sappan wood (Caesalpinia sappan L.) against SARS-CoV-2 spike glycoproteins. Indonesian Journal of Medical Laboratory Science and Technology, 3(1), 26-37. https://doi.org/10.33086/ijmlst.v3i1.1854; https://www.fsjour.com/jour/article/view/485

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Zdroj: Pharmacoepidemiology & Drug Safety; Oct2023 Supplement 1, Vol. 32, p643-675, 33p

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20