Výsledky vyhledávání - "Information Systems statistics & numerical data"

  • Zobrazuji výsledky 1 - 17 z 17
Upřesnit hledání
  1. 1

    Zdroj: Alberico, C O, Schipperijn, J & Reis, R S 2017, ' Use of global positioning system for physical activity research in youth : ESPAÇOS Adolescentes, Brazil ', Preventive Medicine, vol. 103, no. Supplement, pp. S59-S65 . https://doi.org/10.1016/j.ypmed.2016.12.026

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Geografické téma: Yopal, Casanare, Colombia

    Popis souboru: xviii, 166 páginas; application/pdf

    Relation: Amat, J. (2016). Test Kruskal-Wallis. https://github.com/JoaquinAmatRodrigo/Estadistica-con-R/blob/master/PDF_format/20_Kruskal-Wallis_test_alternativa_no_paramétrica_al_ANOVA_independente.pdf; Arboleda, S., Jaramillo-O., N., & Peterson, A. T. (2009). Mapping environmental dimensions of dengue fever transmission risk in the Aburrá Valley, Colombia. International Journal of Environmental Research and Public Health, 6(12), 3040–3055. https://doi.org/10.3390/ijerph6123040; Aschengrau, A., & Seage, G. (2020). Essentials of epidemiology in public health (Fourth edi). Jones & Bartlett Learning. https://europepmc.org/article/NBK/nbk470342#free-full-text; Attaway, D. F., Jacobsen, K. H., Falconer, A., Manca, G., Bennett, L. R., & Waters, N. M. (2014). Mosquito habitat and dengue risk potential in Kenya: Alternative methods to traditional risk mapping techniques. Geospatial Health, 9(1), 119–130. https://doi.org/10.4081/gh.2014.10; Azevedo, T. S. de, & Salli, M. A. M. (2018). the Use of Geographic Information Systems in the Determination of Areas At Risk of Dengue in the São Paulo State. Geografia, 42(2), 121–134. https://doi.org/10.5016/geografia.v42i2.13075; AZEVEDO, T. S. de, & SALLUM, M. A. M. (2018). the Use of Geographic Information Systems in the Determination of Areas At Risk of Dengue in the São Paulo State. Geografia, 42(2), 121–134. https://doi.org/10.5016/geografia.v42i2.13075; Bisanzio, D., Dzul-Manzanilla, F., Gomez-Dantés, H., Pavia-Ruz, N., Hladish, T. J., Lenhart, A., Palacio-Vargas, J., González Roldan, J. F., Correa-Morales, F., Sánchez-Tejeda, G., Kuri Morales, P., Manrique-Saide, P., Longini, I. M., Halloran, M. E., & Vazquez-Prokopec, G. M. (2018). Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Neglected Tropical Diseases, 12(3), 1–13. https://doi.org/10.1371/journal.pntd.0006298; Biswal, S., Reynales, H., Saez-Llorens, X., Lopez, P., Borja-Tabora, C., Kosalaraksa, P., Sirivichayakul, C., Watanaveeradej, V., Rivera, L., Espinoza, F., Fernando, L., Dietze, R., Luz, K., Venâncio da Cunha, R., Jimeno, J., López-Medina, E., Borkowski, A., Brose, M., Rauscher, M., … Wallace, D. (2019). Efficacy of a Tetravalent Dengue Vaccine in Healthy Children and Adolescents. New England Journal of Medicine, 381(21), 2009–2019. https://doi.org/10.1056/nejmoa1903869; Boonklong, O., & Bhumiratana, A. (2016). Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016. https://doi.org/10.1155/2016/8062360; Bortman, M. (1999). Elaboración de corredores o canales endémicos mediante planillas de cálculo. Revista Panamericana de Salud Pública, 5(1), 1–8. https://doi.org/10.1590/s1020-49891999000100001; Buzai, G., & Montes Galbán, E. (2021). Estadística espacial: Fundamentos y aplicación con Sistemas de Información Geográfica. In Revista Cartográfica (Primera Ed). INIGEO.; Camargo España, G. F. (2015). Large-scale vector-borne disease agent-based model, with application to Chikungunya in Colombia [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/51416/1/1032418171.2016.pdf Camargo, G. (2012). Modelamiento de la dinamica del dengue en Colombia [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/9761/1/300339.2012.pdf; Carreño, M. F., Jiménez-Silva, C. L., Rey-Caro, L. A., Conde-Ocazionez, S. A., Flechas-Alarcón, M. C., Velandia, S. A., & Ocazionez, R. E. (2019). Dengue in Santander State, Colombia: fluctuations in the prevalence of virus serotypes are linked to dengue incidence and genetic diversity of the circulating viruses. Tropical Medicine and International Health, 24(12), 1400–1410. https://doi.org/10.1111/tmi.13311; Castañeda-Porras, O; Segura, O.; Garron-Lara, E. . M.-S. C. (2017). Conocimientos , actitudes y prácticas frente al control del vector Aedes aegypti , Villanueva- Materiales y métodos. Rev. Méd. Risaralda, 23(1), 14–22.; CDC. (2020). Ciclo de vida del mosquito. In Centro Nacional para Enfermedades Infecciosas Emergentes y Zoonóticas División de Enfermedades Transmitidas por Vectores (pp. 7–8). CDC. www.cdc.gov/dengue%0Ahttps://www.cdc.gov/zika/pdfs/spanish/MosquitoLifecycle-sp.pdf%0Ahttps://www.cdc.gov/mosquitoes/pdfs/AedesLifeCycle_ESP_508.pdf; Celemín, J. P. (2009). Autocorrelación espacial e indicadores locales de asociación espacial. Importancia, estructura y aplicación. Rev Univ Geogr, 18(1), 11–31. https://doi.org/10.1111/j.1360-0443.2004.00829.x; Chan, K. S., Chang, J. S., Chang, K., Lin, C. C., Huang, J. H., Lin, W. R., Chen, T. C., Hsieh, H. C., Lin, S. H., Lin, J. C., Lu, P. L., Chen, Y. H., Lin, C. Y., & Tsai, J. J. (2009). Effect of serotypes on clinical manifestations of dengue fever in adults. Journal of Microbiology, Immunology and Infection, 42(6), 471–478.; Chareonsook, O., Foy, H. M., Teeraratkul, A., & Silarug, N. (1999). Changing epidemiology of dengue hemorrhagic fever in Thailand. Epidemiology and Infection, 122(1), 161–166. https://doi.org/10.1017/S0950268898001617; Criollo Fonseca, I. Z., Bernal Barón, A. Y., & Castañeda Porras, O. (2014). Conocimientos , actitudes y prácticas sobre dengue , tras aplicación de estrategias de movilización social . Yopal-Casanare. Investigaciones Andina, 16(29), 1001–1015. http://www.redalyc.org/articulo.oa?id=239031678001; de Carvalho, R. M., & Nascimento, L. F. C. (2012). Distribuição espacial da dengue no município de Cruzeiro, estado de S̃o Paulo, Brasil: o uso do geoprocessamento. Revista Do Instituto de Medicina Tropical de Sao Paulo, 54(5), 261–266. https://doi.org/10.1590/S0036-46652012000500005; de Pina, M. D. F., Alves, S. F., Ribeiro, A. I. C., Olhero, A. C., Isabel, A., & Ribeiro, C. (2010). Epidemiología espacial: nuevos enfoques para viejas preguntas. Spatial Epidemiology: New Approaches to Old Questions Epidemiologia Espacial: Novas Abordagens Para Velhas Questões. (English), 29(63), 47–65. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=60762721&site=ehost-live; Desjardins, M. R., Eastin, M. D., Paul, R., Casas, I., & Delmelle, E. M. (2020). Space-Time conditional autoregressive modeling to estimate neighborhood-level risks for dengue fever in Cali, Colombia. American Journal of Tropical Medicine and Hygiene, 103(5), 2040–2053. https://doi.org/10.4269/ajtmh.20-0080; Dhimal, M., Ahrens, B., & Kuch, U. (2015). Climate change and spatiotemporal distributions of vector-borne diseases in Nepal - A systematic synthesis of literature. PLoS ONE, 10(6), 1–31. https://doi.org/10.1371/journal.pone.0129869; Diptyanusa, A., Lazuardi, L., & Jatmiko, R. H. (2020). Implementation of geographical information systems for the study of diseases caused by vector-borne arboviruses in southeast asia: A review based on the publication record. Geospatial Health, 15(1). https://doi.org/10.4081/gh.2020.862; Dirección de Promoción y Prevención. (2022). Lineamiento para la gestión y operación de los programas de enfermedades transmitidas por vectores y zoonosis y otras consideraciones para la ejecución de transferencias nacionales de funcionamiento (p. 103). Ministerio de Salud y Protección Social.; Dzul-Manzanilla, F., Correa-Morales, F., Che-Mendoza, A., Palacio-Vargas, J., Sánchez-Tejeda, G., González-Roldan, J. F., López-Gatell, H., Flores-Suárez, A. E., Gómez-Dantes, H., Coelho, G. E., da Silva Bezerra, H. S., Pavia-Ruz, N., Lenhart, A., Manrique-Saide, P., & Vazquez-Prokopec, G. M. (2021). Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts: a spatial analysis. The Lancet Planetary Health, 5(5), e277–e285. https://doi.org/10.1016/S2542-5196(21)00030-9; Eisen, L., & Eisen, R. J. (2011). Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Annual Review of Entomology, 56, 41–61. https://doi.org/10.1146/annurev-ento-120709-144847; Eisen, L., & Lozano-Fuentes, S. (2009). Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. PLoS Neglected Tropical Diseases, 3(4), 1–7. https://doi.org/10.1371/journal.pntd.0000411; Fábregas, R., González, E., & Neira, Y. (2023). Microfocalización y estratificación epidemiológica de la leishmaniasis cutánea en el departamento de Santander, periodo 2010 – 2020. Revista de Investigación En Salud, 10, 1–28. https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/734/837; Flauzino, R. F., Souza-Santos, R., & Oliveira, E. R. M. (2009). Dengue, geoprocessamento e indicadores socioeconǒmicos e ambientais: Um estudo de revisão. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 25(5), 456–461. https://doi.org/10.1590/S1020-49892009000500012; Garzón Salamanca, J. (2014). El climadiagrama, herramienta para estudiar la influencia de la temperatura y pluviosidad en la incidencia del dengue en los departamentos: Cauca, Huila, y Santander entre el 2007 y 2012. 139. http://www.bdigital.unal.edu.co/46514/; Grillet, M. E., Martínez, J. E., & Barrera, R. (2009). Focos calientes de transmisión de malaria: Implicaciones para un control. Boletín de Malariologia y Salud Ambiental, XLIX(2).; Harapan, H., Michie, A., Mudatsir, M., Sasmono, R. T., & Imrie, A. (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Research Notes, 12(1), 4–9. https://doi.org/10.1186/s13104-019-4379-9; Karyanti, M. R., Uiterwaal, C. S. P. M., Kusriastuti, R., Hadinegoro, S. R., Rovers, M. M., Heesterbeek, H., Hoes, A. W., & Bruijning-Verhagen, P. (2014). The changing incidence of Dengue Haemorrhagic Fever in Indonesia: A 45-year registry-based analysis. BMC Infectious Diseases, 14(1), 1–7. https://doi.org/10.1186/1471-2334-14-412; Khetarpal, N., & Khanna, I. (2016). Dengue Fever: Causes, Complications, and Vaccine Strategies. Journal of Immunology Research, 2016(3). https://doi.org/10.1155/2016/6803098; Krystosik, A. R., Curtis, A., Buritica, P., Ajayakumar, J., Squires, R., Dávalos, D., Pacheco, R., Bhatta, M. P., & James, M. A. (2017). Community context and sub-neighborhood scale detail to explain dengue, chikungunya and Zika patterns in Cali, Colombia. PLoS ONE, 12(8), 1–25. https://doi.org/10.1371/journal.pone.0181208; Lee, G. O., Vasco, L., Márquez, S., Zuniga-Moya, J. C., Van Engen, A., Uruchima, J., Ponce, P., Cevallos, W., Trueba, G., Trostle, J., Berrocal, V. J., Morrison, A. C., Cevallos, V., Mena, C., Coloma, J., & Eisenberg, J. N. S. (2021). A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping. PLoS Neglected Tropical Diseases, 15(9), 1–18. https://doi.org/10.1371/journal.pntd.0009679; Lim, J. K., Carabali, M., Camacho, E., Velez, D. C., Trujillo, A., Egurrola, J., Lee, K. S., Velez, I. D., & Osorio, J. E. (2020). Epidemiology and genetic diversity of circulating dengue viruses in Medellin, Colombia: A fever surveillance study. BMC Infectious Diseases, 20(1), 1–17. https://doi.org/10.1186/s12879-020-05172-7; Ling, C. Y., Gruebner, O., Krämer, A., & Lakes, T. (2014). Spatio-temporal patterns of dengue in Malaysia: Combining address and sub-district level. Geospatial Health, 9(1), 131–140. https://doi.org/10.4081/gh.2014.11; López-Medina, E., Biswal, S., Saez-Llorens, X., Borja-Tabora, C., Bravo, L., Sirivichayakul, C., Vargas, L. M., Alera, M. T., Velásquez, H., Reynales, H., Rivera, L., Watanaveeradej, V., Rodriguez-Arenales, E. J., Yu, D., Espinoza, F., Dietze, R., Fernando, L. K., Wickramasinghe, P., Duarte Moreira, E., … Borkowski, A. (2022). Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. Journal of Infectious Diseases, 225(9), 1521–1532. https://doi.org/10.1093/infdis/jiaa761; Louis, V. R., Phalkey, R., Horstick, O., Ratanawong, P., Wilder-Smith, A., Tozan, Y., & Dambach, P. (2014). Modeling tools for dengue risk mapping - a systematic review. International Journal of Health Geographics, 13(1), 1–15. https://doi.org/10.1186/1476-072X-13-50; Lozano-Fuentes, S., Elizondo-Quiroga, D., Farfan-Ale, J. A., Loroño-Pino, M. A., Garcia-Rejon, J., Gomez-Carro, S., Lira-Zumbardo, V., Najera-Vazquez, R., Fernandez-Salas, I., Calderon-Martinez, J., Dominguez-Galera, M., Mis-Avila, P., Morris, N., Coleman, M., Moore, C. G., Beatya, B. J., & Eisen, L. (2008). Use of Google EarthTM to strengthen public health capacity and facilitate management of vector-borne diseases in resource-poor environments. Bulletin of the World Health Organization, 86(9), 718–725. https://doi.org/10.2471/BLT.07.045880; Marceló-Díaz, C., Lesmes, M. C., Santamaría, E., Salamanca, J. A., Fuya, P., Cadena, H., Muñoz-Laiton, P., & Morales, C. A. (2023). Spatial Analysis of Dengue Clusters at Department, Municipality and Local Scales in the Southwest of Colombia, 2014–2019. Tropical Medicine and Infectious Disease, 8(5), 2014–2019. https://doi.org/10.3390/tropicalmed8050262; Mina Possu, N. J. (2018). Modelo de estratificación del riesgo de transmisión de dengue para el diseño de estrategias de prevención en los barrios de alto riesgo “hot spots”, en dos municipios de Colombia. Universidad del Valle. Ministerio de de Salud y Protección Social. (2013). Dengue: Memorias (p. 22).; Mishra, S., Ramanathan, R., & Agarwalla, S. K. (2016). Clinical Profile of Dengue Fever in Children: A Study from Southern Odisha, India. Scientifica, 2016. https://doi.org/10.1155/2016/6391594; Mora-Salamanca, A. F. (2019). Estimación de la carga de enfermedad de dengue, chikunguña y zika en Colombia entre 2013-2016 [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72558/; Morales, D. (2022). Modelación longitudinal de casos de dengue en Colombia, mediante modelos de conteo Poisson y ZIP de efectos mixtos. Universidad Nacional de Colombia.; Moreno, A., López, S., & Corcho, A. (2015). Principales medidas de epidemiología. Salud Pública de México, 42(4), 338–348. https://www.scielosp.org/article/ssm/content/raw/?resource_ssm_path=/media/assets/spm/v42n4/2882.pdf; Naim, M. R., Sahani, M., Hod, R., Hidayatulfathi, O., Idrus, S., Norzawati, Y., Hazrin, H., Tahir, A., Wen, T. H., King, C. C., & Zainudin, M. A. (2014). Spatial-temporal analysis for identification of vulnerability to dengue in Seremban district, Malaysia. International Journal of Geoinformatics, 10(1), 31–38.; Niño, L. (2011). Interpolación espacial de la abundancia larval de Aedes aegypti para localizer focos de infestación. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 29(6), 416–422. https://doi.org/10.1590/S1020-49892011000600006; Padilla, J. C., Rojas, D., & Sáenz-Gómez, R. (2012). Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia (C. A. Hernández (ed.); Primera ed). Los Autores. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/INV/Dengue en Colombia.pdf; Parija, S. C., & Kate, V. (2018). Thesis Writing for Master’s and Ph.D. Program. In Thesis Writing for Master’s and Ph.D. Program. https://doi.org/10.1007/978-981-13-0890-1; Patel, S. S., Rauscher, M., Kudela, M., & Pang, H. (2023). Clinical Safety Experience of TAK-003 for Dengue Fever: A New Tetravalent Live Attenuated Vaccine Candidate. Clinical Infectious Diseases, 76(3), E1350–E1359. https://doi.org/10.1093/cid/ciac418; Porcasi, X., Rotela, C. H., Introini, M. V., Frutos, N., Lanfri, S., Peralta, G., De Elia, E. A., Lanfri, M. A., & Scavuzzo, C. M. (2012). An operative dengue risk stratification system in Argentina based on geospatial technology. Geospatial Health, 6(3 SUPPL.). https://doi.org/10.4081/gh.2012.120; Restrepo, B. N., Beatty, M. E., Goez, Y., Ramirez, R. E., Letson, G. W., Diaz, F. J., Piedrahita, L. D., & Osorio, J. E. (2014). Frequency and clinical manifestations of dengue in urban Medellin, Colombia. Journal of Tropical Medicine, 2014. https://doi.org/10.1155/2014/872608; Rey, J. R., & Lounibos, P. (2015). Ecología de Aedes aegypti y Aedes albopictus en América y la transmisión de enfermedades. Biomédica, 35(2). https://doi.org/10.7705/biomedica.v35i2.2514; Rodríguez-Villamizar, L. A. (2017). Inferencia causal en epidemiología. Revista de Salud Pública, 19(3), 409–415. https://doi.org/10.15446/rsap.v19n3.66180 Sabchareon, A., Sirivichayakul, C., Limkittikul, K., Chanthavanich, P., Suvannadabba, S., Jiwariyavej, V., Dulyachai, W., Pengsaa, K., Margolis, H. S., & Letson, G. W. (2012). Dengue infection in children in Ratchaburi, Thailand: A cohort study. I. Epidemiology of symptomatic acute dengue infection in children, 2006-2009. PLoS Neglected Tropical Diseases, 6(7), 2006–2009. https://doi.org/10.1371/journal.pntd.0001732; Sánchez, O. P., & Bermejo, P. M. (2020). Brotes, epidemias, eventos y otros términos epidemiológicos de uso cotidiano. Revista Cubana de Salud Publica, 46(2), 1–16. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662020000200003; Shabbir, W., Pilz, J., & Naeem, A. (2020). A spatial-temporal study for the spread of dengue depending on climate factors in Pakistan (2006-2017). BMC Public Health, 20(1), 995. https://doi.org/10.1186/s12889-020-08846-8; Siabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografia: Revista Colombiana de Geografia, 28(1), 1–22. https://doi.org/10.15446/rcdg.v28n1.76919; https://repositorio.unal.edu.co/handle/unal/85362; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17